A TRICKY STATISTICAL SEARCH FOR FAST OPTICAL BURSTS

Carlo Campa

Filippo Ambrosino Piergiorgio Casella Riccardo La Placa Roberta Amato and many others

INAF ISTITUTO NAZIONALE DI ASTROFISICA

TNG image credits: ChatGPI from a photo by Renato Cerisola

Search for sub-second transients

Common in gamma-ray, X-ray, radio bands

Image credit: modified from <u>NASA's Goddard Space Flight Center/S. Wiessinger</u>

Search for sub-second transients

Common in gamma-ray, X-ray, radio bands

Optical astronomy focused on longer timescales

Image credit: modified from <u>NASA's Goddard Space Flight Center/S. Wiessinger</u>

Search for sub-second transients

Common in gamma-ray, X-ray, radio bands

Optical astronomy focused on longer timescales

Now new larger telescopes & new generation detectors

Image credit: modified from NASA's Goddard Space Flight Center/S. Wiessinger

SiFAP2 – Telescopio Nazionale Galileo

Mounted on TNG: the largest italian telescope

Image credit: modified from Giovanni Tessicini, public domain via Wikimedia Commons

SiFAP2 – Telescopio Nazionale Galileo

Mounted on TNG: the largest italian telescope

Time resolution of 80 ps (previously 8 ns)

Image credit: modified from Giovanni Tessicini, public domain via Wikimedia Commons

SiFAP2 – Telescopio Nazionale Galileo

Mounted on TNG: the largest italian telescope

Time resolution of 80 ps (previously 8 ns) Field of view of 7''

Image credit: modified from Giovanni Tessicini, public domain via Wikimedia Commons

Astronomical observations

Astronomical observations

- 200 observations
- ~333 hours
- 63 targets

Fast Optical Bursts

Fast Optical Bursts

Classic Bayesian blocks

Link to the paper by Scargle and collaborators (2013)

Classic Bayesian blocks

Classic Bayesian blocks

1st change: Linearized Bayesian blocks

1st change: Linearized Bayesian blocks

2nd change: Modified-Poisson Bayesian blocks

From **real** observations

From dark observations

2nd change: Modified-Poisson Bayesian blocks

From **dark** observations

From **real** observations

FOBs with solar elevation angle

FOBs with solar elevation angle

FOBs with solar elevation angle

LON Earth Orbits 3 2.5 Line of sight FOBs per hour 1.5 2 Eart 'Sh; 0.5 Full Mostly Mostly Full Sun 0 in shadow sunlit sunlit in shadow Low Earth Orbit along the line of sight

FOBs with Low Earth Orbits sunlight exposure

FOBs with Low Earth Orbits sunlight exposure

FOBs with Low Earth Orbits sunlight exposure

 Developed a modified Bayesian blocks algorithm to search for FOBs

- Developed a modified Bayesian blocks algorithm to search for FOBS
 - Linearized version to improve speed

- Developed a modified Bayesian blocks algorithm to search for FOBs
 - Linearized version to improve speed
 - Poisson likelihood including Crosstalk correction

- Developed a modified Bayesian blocks algorithm to search for FOBS
 - Linearized version to improve speed
 - Poisson likelihood including Crosstalk correction
- Most FOBs does not originate from the targeted source

- Developed a modified Bayesian blocks algorithm to search for FOBs
 - Linearized version to improve speed
 - Poisson likelihood including Crosstalk correction
- Most FOBs does not originate from the targeted source
 - Sunlight reflection of object in LEO?

- Developed a modified Bayesian blocks algorithm to search for FOB\$
 - Linearized version to improve speed
 - Poisson likelihood including Crosstalk correction
- Most FOBs does not originate from the targeted source
 - Sunlight reflection of object in LEO?
- Excess from the directions of the magnetars

Future steps

V band magnitude

Morphology analysis of bursts, starting with simmetry

Future steps

Morphology analysis of bursts, starting with simmetry

Unsupervised machine learning for clustering

Future steps

- Morphology analysis of bursts, starting with simmetry
- Unsupervised machine learning for clustering

 Simultaneous observations with optical and multi-wavelength facilities