

Probing the IGMF and fundamental physics with gamma-ray propagation

in Manuel Meyer 🕥 axion-alp-dm.github.io 💭 @me_manu

IGMF Workshop Trieste, February 13, 2025

EL ASTROPHYSICAL MODEL

Recently: experimental work on cryogenic single photon detectors

CE

CW laser = 1064 nr

Axel Lindner Friederike (DESY) Januschek TES team lead **ALPS II** at DESY Spokesperson

PhD student Christina Schwemmbauer (DESY)

HSU post doc José Alejandro Rubiera Gimeno

UHH (now HSU) and SDU Post docs Gulden Othman Elmeri Rivasto

The EBL: What contributes to it? Why is it still uncertain?

Cosmic magnetism:

Can we detect an intergalactic magnetic field with y-ray cascades?

4

The EBL: What contributes to it? Why is it still uncertain?

Cosmic magnetism:

Can we detect an intergalactic magnetic field with y-ray cascades?

Source physics:

Can we say something about CR acceleration from CR induced cascades and neutrinos?

3

tell us about axions?

The EBL: What contributes to it? Why is it still uncertain?

Cosmic magnetism:

Can we detect an intergalactic magnetic field with y-ray cascades?

Source physics:

Can we say something about CR acceleration from CR induced cascades and neutrinos?

Background radiation fields

EBL Measurements

[e.g., Hauser & Dwek 2001, Dwek & Krennrich 2013]

Z_{max}

Z

c²

$$\nu I_{\nu}(\lambda, z) = \frac{c^2}{4\pi\lambda}$$

$$S_{\nu'}\left(\lambda \frac{1+z}{1+z'}, z'\right) \left| \frac{\mathrm{d}t}{\mathrm{d}z'} \right| \mathrm{d}t$$

EBL Measurements

[e.g., Hauser & Dwek 2001, Dwek & Krennrich 2013]

dz'

EBL Measurements

[e.g., Hauser & Dwek 2001, Dwek & Krennrich 2013]

$$\nu I_{\nu}(\lambda, z) =$$

Ingredients to the EBL: stars **EBL** forward folding model

Photons escaping dust absorption

 $t_{\star}(z,z') = \int_{z}^{z'} \left| \frac{dt}{dz''} \right| dz''$

Age of stellar population

[Porras Bedmar, MM, Horns 2024, e.g. Finke et al. 2022]

PhD Student Sara Porras Bedmar (UHH)

 $\mathscr{E}_{\nu}^{\text{stars}}(z) = f_{\text{esc}}(\lambda, z) \int_{z}^{z_{\text{max}}} L_{\nu}^{\text{stars}}(t_{\star}(z, z')) \psi(z') \left| \frac{dt}{dz'} \right| dz'$

Luminosity of stellar population of age t_{\star}

Ingredients to the EBL: stars **EBL forward folding model**

^Zmax

 $\mathscr{E}_{\nu}^{\text{stars}}(z) = f_{\text{esc}}(\lambda, z)$

Photons escaping dust absorption

[Porras Bedmar, MM, Horns 2024, e.g. Finke et al. 2022, Madau & Dickinson 2014]

PhD Student Sara Porras Bedmar (UHH)

 $L_{\nu}^{\text{stars}}(t_{\star}(z,z')) \psi(z')$

 $\frac{dt}{dz'}$ dz'

Luminosity of stellar population of age t_{\star}

Cosmic star formation rate density

MD14 parameters

 $\psi(z) = \psi_0 \frac{(1+z)^{\alpha}}{1 + (\gamma(1+z))^{\beta}}$ $\psi_0 = 0.015 \ M_{\odot} \ \text{year}^{-1} \,\text{Mpc}^{-3}$ $\alpha = 2.7$ $\beta = 5.6$ $\gamma = 1/2.9$ 10 12

Ingredients to the EBL: dust EBL forward folding model - work in progress

Luminosity of dust for stellar population of age

Normalized such that the total emitted luminosity is equal to the absorbed luminosity $L_{\text{abs,SSP}}(t_{\star}) = \left[\left(1 - f_{\text{esc}}(\lambda, z) \right) L_{\nu}^{\text{stars}}(\lambda, t_{\star}) d\nu \right]$

Dust reemission:

- Templates from <u>Chary et al. (2001)</u>
- BOSA Templates from Boquien & Salim (2021)
- 3. Three grey body spectra (three dust grain populations, Finke et al. 2022)

PhD Student Sara Porras Bedmar (UHH)

 $\mathscr{E}_{\nu}^{\text{dust}}(z) = \int_{z}^{z_{\text{max}}} L_{\nu}^{\text{dust}}(t_{\star}(z, z')) \psi(z') \quad \frac{dt}{dz'} \quad dz'$

Putting it all together in a fit COB fixed through emissivity data from galaxy number counts

[Porras Bedmar, MM, Horns 2024, work in progress]

Sara Porras Bedmar (UHH)

Fit to emissivity data

Additional contributions to the EBL?

PhD Student Sara Porras Bedmar (UHH)

For COB: contributions negligible

Cosmic axion decay

- Axion dark matter would also decay over the entire history of the universe
- Contributes to isotropic photon backgrounds (see lecture on EBL)

$$\nu I_{\nu}(\lambda, z) = \frac{\Omega_a \rho_{\text{crit},0}}{64\pi} \frac{m_a^2 g_{a\gamma}^2}{\lambda H(z_*)} \Theta(z_* - z)$$

With $z_* = \frac{m_a}{2} \frac{\lambda}{2\pi} (1 + z) - 1$

Decay rate:

$$\Gamma_{a\gamma} = \tau_{a\gamma}^{-1} = \frac{m_a^3 g_{a\gamma}^2}{64\pi}$$
Decay time:

$$\tau_{a\gamma} \gtrsim 13.8 \text{ Gyr} \left(\frac{5.5 \times 10^{-7} \text{ GeV}^{-1}}{g_{a\gamma}}\right)^2 \left(\frac{1 \text{ eV}}{m_a}\right)$$
Decay wavelength:

$$\lambda_a = \frac{4\pi}{m_a} = 2.48 \,\mu\text{m} \left(\frac{1 \text{ eV}}{m_a}\right)$$

 10^{2}

 \mathcal{A}

 10^{1}

/ ST νI_{ν} (nW / m² 10^{0}

10-

 10^{-2}

[Porras Bedmar, MM, Horns 2024]

Sara Porras Bedmar (UHH)

Overduin 2002, Cadamuro & Redondo 2012, Bernal et al. 2023

Constraints from ALP decay

Optical Depth

Line of sight integral to source

[e.g., Hauser & Dwek 2001, Dwek & Krennrich 2013, Biteau & MM 2022]

Integral over energy over photon density of background radiation field

Integral over angle $\mu = \cos \theta$ between photon momenta over pair-production cross section

Indirect detection of the IGMF Signatures of an IGMF in γ -ray observations

- Excess y rays at lower energies
- Extended x-ray halos [Aharonian et al. 1994]
- Time delayed y-ray emission [Plaga 1995]
- Biggest uncertainty: blazar duty cycle

Constraints from Fermi LAT and H.E.S.S.

Aharonian et al. (2023), ApJL 950, 2, id.L16, 16, arXiv:2306.05132

Source Selection

• Demands:

- Emission at energies corresponding to strong a
- Stable gamma-ray emission in time as seen with
- \Rightarrow extreme HBL sources
- Source selection from 4LAC-DR2 catalog:
 - Spectral type: power law & $\Gamma + \sigma_{\Gamma} < 2$
 - Redshift known
 - BL Lac source type with synchrotron peak $u_{
 m Sync}$
 - Chance probability < 99% that source is variable
 - Sources with TeV counterpart observed with H.

Resulting sources:

bsorption	Source Name	Redshift
ו the LAI	1ES 0229+200	0,139
	1ES 0347-121	0,188
	PKS 0548-322	0,069
$> 10^{17} \mathrm{Hz}$	1ES 1101-232	0,186
E.S.S.	H 2356-309	0,165

Modeling the halo with CRPropa3

- •<u>CRPropa 3</u> Monte Carlo Code used to generate 4D (spatial + energy + delay time) halo templates
- In comoving coordinates
- Assumed magnetic field: simple cell like structure
 - $B = 10^{-16} \text{ G}, \dots, 10^{-13} \text{ G}$
 - $\lambda_B = 1 \,\mathrm{Mpc}$
- •EBL model of Dominguez et al. (2011)

Searching for cascade emission in LAT data

- TS map tests at each pixel if additional emission is present
- No un-modeled excess emission in vicinity of sources observed

TS map from data

H.E.S.S. Data sets

- Data taken with small telescopes up to 2018 considered here
- Analysis performed using gammapy [Deil et al. 2017]
- Source spectra $\phi_{\rm obs}$ well described by power law including EBL absorption, $\phi_{\rm obs} = N(E/E_0)^{-\Gamma} \exp(-\tau)$

Source	Life time (hours)	Detection significance	Power law index Γ
1ES 0229+200	144,1	16.5 σ	1.76 ± 0.12
1ES 0347-121	59,2	16.1 σ	2.12 ± 0.15
PKS 0548-322	53,9	10.2σ	1.92 ± 0.12
1ES 1101-232	71,9	18.7 o	1.66 ± 0.09
H 2356-309	150,5	23.4σ	2.10 ± 0.09

 Intrinsic blazar model (assumed constant over activity time):

$$\phi(E) = N\left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{\text{cut}}}\right)$$

- Total source model: $\phi_{tot}(E,B) = \overline{\phi(E)} \exp(-\tau) + \overline{\phi_{halo}(E,B)}$
- Halo flux taken from CRPropa3 simulation; depends on spectral parameters, blazar activity time...
- Spectral parameters optimized using combined H.E.S.S. and LAT likelihoods:

 $\ln \mathscr{L} = \ln \mathscr{L}_{\text{LAT}} + \ln \mathscr{L}_{\text{H.E.S.S.}}$

• Takes both spectral and spatial (for LAT) information into account

 Intrinsic blazar model (assumed constant over activity time):

$$\phi(E) = N\left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{\text{cut}}}\right)$$

- Total source model: $\phi_{tot}(E,B) = \overline{\phi(E)} \exp(-\tau) + \overline{\phi_{halo}(E,B)}$
- Halo flux taken from CRPropa3 simulation; depends on spectral parameters, blazar activity time...
- Spectral parameters optimized using combined H.E.S.S. and LAT likelihoods:

 $\ln \mathscr{L} = \ln \mathscr{L}_{\text{LAT}} + \ln \mathscr{L}_{\text{H.E.S.S.}}$

 Takes both spectral and spatial (for LAT) information into account

 Intrinsic blazar model (assumed constant over activity time):

$$\phi(E) = N\left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{\text{cut}}}\right)$$

- Total source model: $\phi_{tot}(E,B) = \overline{\phi(E)} \exp(-\tau) + \overline{\phi_{halo}(E,B)}$
- Halo flux taken from CRPropa3 simulation; depends on spectral parameters, blazar activity time...
- Spectral parameters optimized using combined H.E.S.S. and LAT likelihoods:

 $\ln \mathscr{L} = \ln \mathscr{L}_{\text{LAT}} + \ln \mathscr{L}_{\text{H.E.S.S.}}$

 Takes both spectral and spatial (for LAT) information into account

 Intrinsic blazar model (assumed constant over activity time):

$$\phi(E) = N\left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{\text{cut}}}\right)$$

- Total source model: $\phi_{tot}(E,B) = \overline{\phi(E)} \exp(-\tau) + \overline{\phi_{halo}(E,B)}$
- Halo flux taken from CRPropa3 simulation; depends on spectral parameters, blazar activity time...
- Spectral parameters optimized using combined H.E.S.S. and LAT likelihoods:

 $\ln \mathscr{L} = \ln \mathscr{L}_{\text{LAT}} + \ln \mathscr{L}_{\text{H.E.S.S.}}$

 Takes both spectral and spatial (for LAT) information into account

Intrinsic blazar model (assumed constant over activity time):

$$\phi(E) = N\left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{\text{cut}}}\right)$$

- Total source model: $\phi_{tot}(E, B) = \phi(E) \exp(-\tau) + \phi_{halo}(E, B)$
- Halo flux taken from CRPropa3 simulation; depends on spectral parameters, blazar activity time...
- Spectral parameters optimized using combined H.E.S.S. and LAT likelihoods:

 $\ln \mathscr{L} = \ln \mathscr{L}_{\text{LAT}} + \ln \mathscr{L}_{\text{H.E.S.S.}}$

Takes both spectral and spatial (for LAT) information into account

Results: lower limits on IGMF Data does not prefer presence of halo

Results: lower limits on IGMF Data does not prefer presence of halo

Results: lower limits on IGMF Data does not prefer presence of halo

- If pairs lose energy through scattering CMB photons, B fields weaker than $B \lesssim 7 \times 10^{-16}$ G for $t_{\rm max} = 10$ yr are ruled out
- Previous constraints improved by factor of 2
- Gamma-ray emission is assumed to be constant over activity time
- Can we actually say something about the origin of the B fields?

What about the filling factor?

- Lower filling factor: less deflection
- Previous results: f > 0.6 from 1ES0229+200 for $t_{\rm max} \gtrsim 10^2$ years [Dolag et al. 2012]
- In principle:
 - Primordial fields: high f
 - Astrophysical fields: lower f
 - But how low / high and what are the constraints?

Work led by Jonas Tjemsland

Constraints for IGMFs predicted in MHD simulations

Jonas Tjemsland, MM, Franco Vazza (2024), ApJ 963, 2, id.135, arXiv: <u>2311.04273</u>

Using cosmological MHD simulations Probe the cascade with more realistic magnetic field configurations

- MHD simulations from <u>Vazza et al. 2017, 1711.02669</u>
- primordial

• Different generation mechanisms considered (see Franco's talk): astrophysical and

Implementation Probe the cascade with more realistic magnetic field configurations

- Simulation volume periodically repeated
- starting points)
- Magnetic fields fed into ELMAG code, gives cascade prediction

D_{comoving}

• Tested 100 random lines of sight through simulation volume (with random

Tested IGMF simulations Primordial and astrophysical origin

41

Characteristics of MHD simulations

- Sampled 100 random lines of sight through periodically repeated simulation volume
- Overdensities identified for $B > 10^{-15} \,\mathrm{G}$
- Astrophysical models have low values of W, results in low filling factor

42

Analysis procedure

 10^{1}

$B = 10^{-13} \,\mathrm{G}$

$B = 10^{-15} \,\mathrm{G}$

For testing analysis: domain like fields with f = 1

No Gaussian prior

With Gaussian prior

- Simplification: only use spectral information
- Use cascade that arrives within 68% of Fermi PSF
- Intrinsic source parameters optimized
- Can lead to false detection of IGMF (with hard intrinsic spectrum)
- Use Gaussian prior on spectral index
- Yields consistent results with full spectral + spatial analysis
- Full likelihood:

 $-2\ln\mathscr{L} = -2\ln\mathscr{L}_{\text{LAT, spectrum}} + \chi^2_{\text{H.E.S.S.}}$

 10^{1}

For testing analysis: domain like fields with f = 1

Analysis procedure

- Simplification: only use spectral information
- Use cascade that arrives within 68% of Fermi PSF
- Intrinsic source parameters optimized
- Can lead to false detection of IGMF (with hard intrinsic spectrum)
- Use Gaussian prior on spectral index
- Yields consistent results with full spectral + spatial analysis
- Full likelihood:

 $-2\ln\mathscr{L} = -2\ln\mathscr{L}_{\text{LAT, spectrum}} + \chi^2_{\text{H.E.S.S.}} +$

Analysis procedure

- Simplification: only use spectral information
- Use cascade that arrives within 68% of Fermi PSF
- Intrinsic source parameters optimized
- Can lead to false detection of IGMF (with hard intrinsic spectrum)
- Use Gaussian prior on spectral index
- Yields consistent results with full spectral + spatial analysis
- Full likelihood:

 $-2\ln\mathscr{L} = -2\ln\mathscr{L}_{\text{LAT, spectrum}} + \chi^2_{\text{H.E.S.S.}} + \left(\frac{1}{2}\right)$

Result spectra for different models

Results for MHD simulated IGMF

- All simulations with astrophysical IGMF can be ruled out
- Valid for all considered lines of sight
- Assumes activity time of 10^7 years

al ight ars

Constraints for filling factor For top-hat distributed B field

- Assuming top-hat like magnetic field with $B = 10^{-12} \,\mathrm{G}$
- Results independent for distance between structures for $D \gtrsim 5 \,\mathrm{Mpc}$
- With prior on Γ : filling factor must be larger than $f \gtrsim 0.7$

E > 100 MeV 10 hours of observation 20° x 20° Credit: NASA/DOE/Fermi LAT Collaboration

Constraints on the intergalactic magnetic field from Fermi-LAT observations of GRB 221009A

See Paolo's talk on Monday

VHE photons seen with LHAASO

[LHAASO Collaboration <u>Science</u> <u>2023, Sci. Adv. 2023</u>]

- WCDA: > 64,000 gamma rays
- KM2A: 140 gamma rays between 3 and 13 TeV in ~900s

between 0.2 TeV and 7 TeV in ~3000s

- Light curve suggests jet opening angle of 1.6°
- Distance and highest energies: strong absorption on EBL

KM2A sees **13 TeV** photon

- WCDA: > 64,000 gamma rays
- KM2A: 140 gamma rays between 3 and 13 TeV in ~900s

[LHAASO Collaboration <u>Science</u> <u>2023, Sci. Adv. 2023</u>]

between 0.2 TeV and 7 TeV in ~3000s

- Light curve suggests jet opening angle of 1.6°
- Distance and highest energies: strong absorption on EBL

13 (18) TeV photon exceptional!? (Considering z = 0.1505)

Astrophysical interpretations

- Reverse shock propagating through ejecta leads ulletto proton acceleration and proton synchrotron emission up to 10s of TeV at T > 400 s [Zhang et al. 2022, 2211.05754]
- Requires efficient proton acceleration and high • B fields inside source
- And / or: UHECR protons accelerated in fireball scenario interact with EBL and produce cosmogenic gamma rays (and neutrinos) [Rudolph et al. 2022, 2212.0076, Razzaque & Das 2022, 2210.13349, Alves Batista 2022, 2210.12855]
- Requires efficient proton acceleration and small • deflection of UHECR in host galaxy and intergalactic medium

Proton induced cascades?

- Injected protons up to 10^{18} eV and traced electromagnetic cascade with CRPropa
- Can improve fit at highest energy bin
- Only for low IGMFs of 10^{-20} G and 10^{-18} G so far
- High resolution leads to extremely expensive simulations
- Do we need dedicated software?

Johanna Müller Master student (just finished) at SDU

Proton induced cascades?

• We are also investigating possible contributions to gamma-ray spectrum of TXS0506+056

• Allows us to derive constraints on the luminosity of protons escaping the source

Atreya Archayya Post Doc at SDU

ALP interpretation?

- Astrophysical environments considered:
 - Mixing in GRB •
 - Host galaxy (starburst with high B field) or spiral)
 - IGMF
 - Milky Way
- EBL model: Saldana Lopez et al. 2021
- Photon flux considerably boosted at 18 ulletTeV

[Galanti et al. 2024 and 10+ other papers]

[Galanti et al. 2024]

ALP interpretation?

- Astrophysical environments considered:
 - Mixing in GRB ullet
 - Host galaxy (starburst with high B field) or spiral)
 - IGMF
 - Milky Way
- EBL model: Saldana Lopez et al. 2021 •
- Photon flux considerably boosted at 18 ulletTeV

[Galanti et al. 2024 and 10+ other papers]

[Galanti et al. 2024]

57

- Host galaxy observed with JWST and HST:
 - Appears to be ordinary spiral galaxy
 - Observed edge-on
 - Strong B field unlikely
- LHAASO observations:
 - Highest energy photon at 13 (not 18 TeV)

Caveats

Galanti et al. 2024

Using the actual KM2A spectral data

- Fit over WCDA and KM2A with log parabola and EBL attenuation provides good fit
- Max contribution from last data point to χ^2 : 1.8
- Mixing inside GRB negligible effect

10[TeV/cm²s] 10^{-9} 10^{-11} SED $\cdot 10^{-13}$ 10^{-15} 2.5 0.0 × -2.5

Using the actual KM2A spectral data

- Fit over WCDA and KM2A with log parabola and EBL attenuation provides good fit
- Max contribution from last data point to χ^2 : 1.8
- Mixing inside GRB negligible effect
- Best-fit ALP parameters give improvement $\Delta \chi^2 = 11.74 - 10.14 = 1.60$

10TeV/cm²s] 10^{-9} 10^{-11} SED -10^{-13} 10^{-15} 2.5 0.0 × -2.5

Conclusions

- Level of EBL still uncertain but well constrained in the optical from galaxy number counts
- So far: no additional contribution to EBL detected / required to explain observations
- Combination of data from IACTs and the LAT yield strong constraints on the IGMF through non-observation of pair cascade from blazars
- If pairs lose energy through scattering CMB photons, domain-like B fields weaker than $B \lesssim 7 \times 10^{-16}$ G for $t_{\rm max} = 10$ yr are ruled out
- Magnetic fields from purely astrophysical origin can be ruled out from blazar observations
- GRB221009A provides strong additional probe of IGMF with less uncertainties
- Axion interpretation of highest energy photons observed with LHAASO KM2A questionable
- Outlook: CTA observations with improved sensitivity, PSF, energy range will yield new constraints in the next years [<u>Abdalla et al. (including MM) 2021</u>]

MF with less uncertainties rved with LHAASO KM2A

Axion outlook

- Could we look for them in AGN spectra behind mega radio halos? ightarrow
- If IGMF is large ~ 0.1 nG, photon-axion oscillation in IGMF could be relevant

• Better understanding of intervening magnetic fields (in IGMF, clusters, AGN jets, host galaxy, our own MW) helps to look for axion signatures

OUTLOOK IN 2017: SIMULATIONS OF THE CLUSTER MAGNETIC FIELD

- Enable to properly resolve dynamo amplification of primordial fields
- Match the observed Faraday Rotation of Coma
- At the moment: do not include radiative feedback or cooling
- Simulating Perseus difficult due to the (likely) importance of AGN feedback

Highest resolution MHD run of a galaxy clusters to-date (Reynolds number ~7000)

Preliminary: B field (2D slice through galaxy cluster center)

900,000 CPU hours on Jureca-JUELICH FZ Vazza, Brunetti, Bruggen, Bonafede to be sub.

OUTLOOK IN 2017: USING THE CLUSTER MAGNETIC FIELD FOR PHOTON-ALP OSCILLATIONS

100 LINES OF SIGHTS THROUGH PERSEUS