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1 The EBL: 
What contributes to it? Why is it still uncertain?

ɣCMB ɣ

2 Cosmic magnetism: 
Can we detect an intergalactic magnetic field 
with ɣ-ray cascades?
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3 Source physics: 
Can we say something about CR acceleration  
from CR induced cascades and neutrinos?
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3 Source physics: 
Can we say something about CR acceleration  
from CR induced cascades and neutrinos?

1 The EBL: 
What contributes to it? Why is it still uncertain?

4 Fundamental physics: 
What can ɣ-ray observations 
tell us about axions?

ɣCMB ɣ

2 Cosmic magnetism: 
Can we detect an intergalactic magnetic field 
with ɣ-ray cascades?
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Background radiation fields
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Optical - far infrared  
background  

= Extragalactic 
background light (EBL)

λ =
hc
ϵ

≈ 1.21 μm ( E
TeV )

Peak of pair-production cross section:



EBL Measurements

8[e.g., Hauser & Dwek 2001, Dwek & Krennrich 2013]

Direct measurements / 
upper limits

Lower limits from galaxy 
number counts

Data compilation form J. Biteau

S TA R L I G H T D U S T

νIν(λ, z) =
c2

4πλ

zmax

∫
z

ℰν′ (λ
1 + z
1 + z′ 

, z′ ) dt
dz′ 

dz′ 

https://ui.adsabs.harvard.edu/abs/2001ARA&A..39..249H/abstract
https://ui.adsabs.harvard.edu/abs/2013APh....43..112D/abstract
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Direct measurements / 
upper limits

Lower limits from galaxy 
number counts

Data compilation form J. Biteau

S TA R L I G H T D U S T

Zodiacal light

https://ui.adsabs.harvard.edu/abs/2001ARA&A..39..249H/abstract
https://ui.adsabs.harvard.edu/abs/2013APh....43..112D/abstract
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EBL Measurements

10[e.g., Hauser & Dwek 2001, Dwek & Krennrich 2013]

Direct measurements / 
upper limits

Lower limits from galaxy 
number counts

Data compilation form J. Biteau

S TA R L I G H T D U S T
New Horizons 
Spacecraft /  
Long Range  

Reconnaissance  
Imager (LORRI): 

EBL 
measurement  

at 53 AU!

https://ui.adsabs.harvard.edu/abs/2001ARA&A..39..249H/abstract
https://ui.adsabs.harvard.edu/abs/2013APh....43..112D/abstract


Ingredients to the EBL: stars
EBL forward folding model

Initial mass function

Stellar metallicity
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Spectrum of simple stellar population 
(Starburst99 code)

PhD Student 
Sara Porras Bedmar (UHH)

 

Age of stellar population

t⋆(z, z′ ) = ∫
z′ 

z

dt
dz′ ′ 

dz′ ′ 

Photons escaping 
dust absorption

Luminosity of stellar 
population of age t⋆

ℰstars
ν (z) = fesc(λ, z) ∫

zmax

z
Lstars

ν (t⋆(z, z′ )) ψ(z′ )
dt
dz′ 

dz′ 

[Porras Bedmar, MM, Horns 2024, e.g. Finke et al. 2022]

https://arxiv.org/abs/2407.10618
https://arxiv.org/abs/2210.01157


MD14 parameters

Cosmic star 
formation 

rate density 

[]
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ψ(z) = ψ0
(1 + z)α

1 + (γ(1 + z))β

ψ0 = 0.015 M⊙ year−1 Mpc−3

α = 2.7

β = 5.6

γ = 1/2.9
[Porras Bedmar, MM, Horns 2024, e.g. Finke et al. 2022, Madau & Dickinson 2014]

Ingredients to the EBL: stars
EBL forward folding model PhD Student 

Sara Porras Bedmar (UHH)

Photons escaping 
dust absorption

Luminosity of stellar 
population of age t⋆

ℰstars
ν (z) = fesc(λ, z) ∫

zmax

z
Lstars

ν (t⋆(z, z′ )) ψ(z′ )
dt
dz′ 

dz′ 

https://arxiv.org/abs/2407.10618
https://arxiv.org/abs/2210.01157
http://arxiv.org/abs/1403.0007
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Ingredients to the EBL: dust
EBL forward folding model - work in progress PhD Student 

Sara Porras Bedmar (UHH)

Luminosity of dust for 
stellar population of age 

t⋆

ℰdust
ν (z) = ∫

zmax

z
Ldust

ν (t⋆(z, z′ )) ψ(z′ )
dt
dz′ 

dz′ 

Normalized such that the total emitted luminosity 
is equal to the absorbed luminosity 

Labs,SSP(t⋆) = ∫ (1 − fesc(λ, z)) Lstars
ν (λ, t⋆)dν

Dust reemission:  
1. Templates from Chary et al. (2001) 
2. BOSA Templates from Boquien & Salim (2021) 
3. Three grey body spectra (three dust grain 

populations, Finke et al. 2022)
Chary templates

BOSA templates

https://ui.adsabs.harvard.edu/abs/2001ApJ...556..562C/abstract
https://arxiv.org/abs/2106.04595
https://arxiv.org/abs/2210.01157


Putting it all together in a fit
COB fixed through emissivity data from galaxy number counts

14

Fit to emissivity data

Preliminary

Preliminary

EBL at z = 0

[Porras Bedmar, MM, Horns 2024, work in progress]

E B L  C O D E  W I L L  B E  M A D E  P U B L I C LY  
AVA I L A B L E

PhD Student 
Sara Porras Bedmar (UHH)

https://arxiv.org/abs/2407.10618
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Additional contributions to the EBL?
PhD Student 

Sara Porras Bedmar (UHH)

[Porras Bedmar, MM, Horns 2024]

Stars with stripped 
envelopes  

in binary systems could 
contribute 

extra ionization 
radiation 

[Götberg et al. 2019]

Stars ejected from host galaxies 
causing intra halo light 

[Bernal et al., 2022]

For COB: contributions 
negligible

https://arxiv.org/abs/2407.10618
https://doi.org/10.1051/0004-6361/201834525
https://doi.org/10.1103/PhysRevLett.129.231301


Cosmic axion decay

• Axion dark matter would also decay over the entire 
history of the universe 

• Contributes to isotropic photon backgrounds (see 
lecture on EBL) 

 

With 

νIν(λ, z) =
Ωaρcrit,0

64π
m2

ag2
aγ

λH(z*)
Θ(z* − z)

z* =
ma

2
λ

2π
(1 + z) − 1
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Overduin 2002,  
Cadamuro & Redondo 2012,  

Bernal et al. 2023

Decay rate: 

 

Decay time: 

 

Decay wavelength: 

 

Γaγ = τ−1
aγ =

m3
ag2

aγ

64π

τaγ ≳ 13.8 Gyr ( 5.5 × 10−7 GeV−1

gaγ )
2

( 1 eV
ma )

3

λa =
4π
ma

= 2.48 μm ( 1 eV
ma )

Decay

γ

γ

a
PhD Student 

Sara Porras Bedmar (UHH)

[Porras Bedmar, MM, Horns 2024]

https://arxiv.org/abs/2407.10618


Constraints from ALP decay

17[Porras Bedmar, MM, Horns 2024]

https://arxiv.org/abs/2407.10618


Optical Depth 

τγγ(E, z0) =
z0

∫
0

dz
dL
dz ∫

∞

0
dϵ

dn
dϵ

(ϵ, z)
1

∫
−1

dμ
1 − μ

2
σγγ(β)
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Line of sight integral 
to source

Integral over energy over 
photon density of 

background radiation field

Integral over angle  
between  

photon momenta 
over pair-production 

cross section 

μ = cos θ

[e.g., Hauser & Dwek 2001, Dwek & Krennrich 2013, Biteau & MM 2022]

https://ui.adsabs.harvard.edu/abs/2001ARA&A..39..249H/abstract
https://ui.adsabs.harvard.edu/abs/2013APh....43..112D/abstract
https://ui.adsabs.harvard.edu/abs/2022Galax..10...39B/abstract


Indirect detection of the IGMF
Signatures of an IGMF in -ray observationsγ

19

γCMB

γEBL
e−

e+

• Excess ɣ rays at lower energies  
[e.g. Neronov & Semikoz 2008] 

• Extended ɣ-ray halos [Aharonian et al. 1994] 

• Time delayed ɣ-ray emission [Plaga 1995]  

• Biggest uncertainty: blazar duty cycle 
[Dermer et al. 2011]



Constraints from  
Fermi LAT and H.E.S.S.

Aharonian et al. (2023), ApJL 950, 2, id.L16, 16, arXiv:2306.05132

20

https://arxiv.org/abs/2306.05132


Source Selection

• Demands:  

• Emission at energies corresponding to strong absorption 

• Stable gamma-ray emission in time as seen with the LAT 

•  extreme HBL sources 

• Source selection from 4LAC-DR2 catalog: 

• Spectral type: power law &  

• Redshift known 

• BL Lac source type with synchrotron peak  

• Chance probability < 99% that source is variable 

• Sources with TeV counterpart observed with H.E.S.S.

⇒

Γ + σΓ < 2

νSync > 1017 Hz

21

Source Name Redshift

1ES 0229+200 0,139

1ES 0347-121 0,188

PKS 0548-322 0,069

1ES 1101-232 0,186

H 2356-309 0,165

Resulting sources:



Modeling the halo 
with CRPropa3
•CRPropa 3 Monte Carlo Code used 
to generate 4D (spatial + energy + 
delay time) halo templates 

•In comoving coordinates  

•Assumed magnetic field: simple 
cell like structure 

•   

•    

•EBL model of Dominguez et al. 
(2011)

B = 10−16 G, …,10−13 G

λB = 1 Mpc

22

https://crpropa.github.io/CRPropa3/


Searching for cascade emission in LAT data

• TS map tests at each pixel if additional emission is present  

• No un-modeled excess emission in vicinity of sources observed 

23

TS map from dataModel expectation



H.E.S.S. Data sets
• Data taken with small telescopes up to 2018 considered here 

• Analysis performed using gammapy [Deil et al. 2017] 

• Source spectra  well described by power law including EBL absorption, ϕobs
ϕobs = N(E/E0)−Γexp(−τ)

24

Source Life time 
(hours) Detection significance Power law index 𝚪

1ES 0229+200 144,1 16.5𝛔 1.76 ± 0.12

1ES 0347-121 59,2 16.1𝛔 2.12 ± 0.15

PKS 0548-322 53,9 10.2𝛔 1.92 ± 0.12

1ES 1101-232 71,9 18.7𝛔 1.66 ± 0.09

H 2356-309 150,5 23.4𝛔 2.10 ± 0.09



Combined H.E.S.S. and LAT analysis
• Intrinsic blazar model (assumed constant over activity 

time): 

 

• Total source model:  

• Halo flux taken from CRPropa3 simulation; depends on 
spectral parameters, blazar activity time…  

• Spectral parameters optimized using combined H.E.S.S. and 
LAT likelihoods: 

 

• Takes both spectral and spatial (for LAT) information into 
account

ϕ(E) = N ( E
E0 )

−Γ

exp (−
E

Ecut )
ϕtot(E, B) = ϕ(E)exp(−τ) + ϕhalo(E, B)

ln ℒ = ln ℒLAT + ln ℒH.E.S.S.

25



Combined H.E.S.S. and LAT analysis
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Combined H.E.S.S. and LAT analysis
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Combined H.E.S.S. and LAT analysis
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• Intrinsic blazar model (assumed constant over activity 
time): 
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Combined H.E.S.S. and LAT analysis
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• Intrinsic blazar model (assumed constant over activity 
time): 

 

• Total source model:  

• Halo flux taken from CRPropa3 simulation; depends on 
spectral parameters, blazar activity time…  

• Spectral parameters optimized using combined H.E.S.S. and 
LAT likelihoods: 

 

• Takes both spectral and spatial (for LAT) information into 
account

ϕ(E) = N ( E
E0 )

−Γ

exp (−
E

Ecut )
ϕtot(E, B) = ϕ(E)exp(−τ) + ϕhalo(E, B)

ln ℒ = ln ℒLAT + ln ℒH.E.S.S.



Results: lower limits on IGMF
Data does not prefer presence of halo

30



Results: lower limits on IGMF
Data does not prefer presence of halo
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Results: lower limits on IGMF
Data does not prefer presence of halo
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33 [Adapted from Durrer & Neronov 2013 and Abdalla et al. 2021]

Results: lower limits on IGMF



34 [Adapted from Durrer & Neronov 2013 and Abdalla et al. 2021]

Results: lower limits on IGMF



35 [Adapted from Durrer & Neronov 2013 and Abdalla et al. 2021]

Results: lower limits on IGMF



36 [Adapted from Durrer & Neronov 2013 and Abdalla et al. 2021]

• If pairs lose energy through 
scattering CMB photons, B fields 
weaker than  
for   are ruled out 

• Previous constraints improved 
by factor of 2 

• Gamma-ray emission is assumed 
to be constant over activity time 

• Can we actually say something 
about the origin of the B fields?

B ≲ 7 × 10−16 G
tmax = 10 yr

Results: lower limits on IGMF



37 [Adapted from Durrer & Neronov 2013 and Abdalla et al. 2021]

Filli
ng

 fa
cto

r f

1

0

• Lower filling factor: less 
deflection 

• Previous results:  from 
1ES0229+200 for  
years [Dolag et al. 2012] 

• In principle: 

• Primordial fields: high  

• Astrophysical fields: lower  

• But how low / high and what 
are the constraints?

f > 0.6
tmax ≳ 102

f

f

What about the filling factor?

?

https://arxiv.org/abs/1009.1782


Constraints for IGMFs 
predicted in MHD simulations
Jonas Tjemsland, MM, Franco Vazza (2024), ApJ 963, 2, id.135, arXiv: 2311.04273 

38

Work led by Jonas Tjemsland

https://arxiv.org/pdf/2311.04273


Using cosmological MHD simulations
Probe the cascade with more realistic magnetic field configurations

• MHD simulations from Vazza et al. 2017, 1711.02669 

• Different generation mechanisms considered (see Franco’s talk): astrophysical and 
primordial 

39

https://arxiv.org/abs/1711.02669


Implementation
Probe the cascade with more realistic magnetic field configurations

• Simulation volume periodically repeated  

• Tested 100 random lines of sight through simulation volume (with random 
starting points) 

• Magnetic fields fed into ELMAG code, gives cascade prediction
40

…

Dcomoving



Tested IGMF simulations
Primordial and astrophysical origin

41



Characteristics of MHD simulations

• Sampled 100 random lines of sight through periodically repeated simulation volume 

• Overdensities identified for  

• Astrophysical models have low values of , results in low filling factor 

B > 10−15 G

W
42

Filling factor Distance 
between filaments

Crossing  
length of filaments



Analysis procedure

43

• Simplification: only use spectral information 

• Use cascade that arrives within 68% of Fermi PSF 

• Intrinsic source parameters optimized 

• Can lead to false detection of IGMF (with hard intrinsic 
spectrum) 

• Use Gaussian prior on spectral index 

• Yields consistent results with full spectral + spatial 
analysis 

• Full likelihood: 

−2 ln ℒ = − 2 ln ℒLAT, spectrum + χ2
H.E.S.S. + ( Γ − Γ0

σΓ )
2

For testing analysis: domain like fields with f = 1

N
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B = 10−13 G B = 10−15 G
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For testing analysis: domain like fields with f = 1

With Gaussian prior on , Γ σΓ = 0.1

• Simplification: only use spectral information 

• Use cascade that arrives within 68% of Fermi PSF 

• Intrinsic source parameters optimized 

• Can lead to false detection of IGMF (with hard intrinsic 
spectrum) 

• Use Gaussian prior on spectral index 

• Yields consistent results with full spectral + spatial 
analysis 

• Full likelihood: 

−2 ln ℒ = − 2 ln ℒLAT, spectrum + χ2
H.E.S.S. + ( Γ − Γ0

σΓ )
2

Analysis procedure
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For testing analysis: domain like fields with f = 1

• Simplification: only use spectral information 

• Use cascade that arrives within 68% of Fermi PSF 

• Intrinsic source parameters optimized 

• Can lead to false detection of IGMF (with hard intrinsic 
spectrum) 

• Use Gaussian prior on spectral index 

• Yields consistent results with full spectral + spatial 
analysis 

• Full likelihood: 

−2 ln ℒ = − 2 ln ℒLAT, spectrum + χ2
H.E.S.S. + ( Γ − Γ0

σΓ )
2

Analysis procedure



Result spectra for different models
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Results for MHD simulated IGMF

47

• All simulations with astrophysical 
IGMF can be ruled out  

• Valid for all considered lines of sight 

• Assumes activity time of  years107



Constraints for filling factor

48

• Assuming top-hat like magnetic 
field with  

• Results independent for distance 
between structures for  

• With prior on : filling factor must 
be larger than 

B = 10−12 G

D ≳ 5 Mpc

Γ
f ≳ 0.7

For top-hat distributed B field
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E > 100 MeV 
10 hours of observation 

20º x 20º 
Credit: NASA/DOE/Fermi LAT Collaboration

Constraints on the 
intergalactic magnetic field 

from Fermi-LAT observations 
of GRB 221009A 

See Paolo’s talk on Monday 

Preliminary



• WCDA: > 64,000 gamma rays 
between 0.2 TeV and 7 TeV in ~3000s 

• KM2A: 140 gamma rays between 3 
and 13 TeV in ~900s 

• Light curve suggests jet opening 
angle of 1.6º 

• Distance and highest energies: strong 
absorption on EBL 

50

VHE 
photons 

seen with 
LHAASO

[LHAASO Collaboration Science 
2023, Sci. Adv. 2023]

LHAASO

WCDA KM2A

https://www.science.org/doi/10.1126/science.adg9328
https://www.science.org/doi/10.1126/science.adg9328
https://www.science.org/doi/10.1126/sciadv.adj2778


• WCDA: > 64,000 gamma rays 
between 0.2 TeV and 7 TeV in ~3000s 

• KM2A: 140 gamma rays between 3 
and 13 TeV in ~900s 

• Light curve suggests jet opening 
angle of 1.6º 

• Distance and highest energies: strong 
absorption on EBL 

51

KM2A sees 
13 TeV 
photon

[LHAASO Collaboration Science 
2023, Sci. Adv. 2023]

LHAASO

[C
ao

 e
t a

l. 
20

23
]

https://www.science.org/doi/10.1126/science.adg9328
https://www.science.org/doi/10.1126/science.adg9328
https://www.science.org/doi/10.1126/sciadv.adj2778
https://www.science.org/doi/10.1126/sciadv.adj2778


13 (18) TeV photon exceptional!?
(Considering )z = 0.1505

52 Generated with  https://github.com/me-manu/ebltable/ 

https://github.com/me-manu/ebltable/


Astrophysical interpretations
• Reverse shock propagating through ejecta leads 

to proton acceleration and proton synchrotron 
emission up to 10s of TeV at   
[Zhang et al. 2022, 2211.05754] 

• Requires efficient proton acceleration and high 
B fields inside source 

• And / or: UHECR protons accelerated in fireball 
scenario interact with EBL and produce 
cosmogenic gamma rays (and neutrinos)  
[Rudolph et al. 2022, 2212.0076, Razzaque & Das 2022, 
2210.13349, Alves Batista 2022, 2210.12855] 

• Requires efficient proton acceleration and small 
deflection of UHECR in host galaxy and 
intergalactic medium

T > 400 s

53

Zhang et al. 2022, 2211.05754

Zhang et al. 2022, 2211.05754
Razzaque & Das 2022, 2210.13349

https://arxiv.org/pdf/2211.05754.pdf
https://arxiv.org/pdf/2212.00766.pdf
https://ui.adsabs.harvard.edu/abs/2022arXiv221013349D/abstract
https://ui.adsabs.harvard.edu/abs/2022arXiv221013349D/abstract
https://ui.adsabs.harvard.edu/abs/2022arXiv221012855A/abstract
https://arxiv.org/pdf/2211.05754.pdf
https://arxiv.org/pdf/2211.05754.pdf
https://ui.adsabs.harvard.edu/abs/2022arXiv221013349D/abstract


Proton induced cascades?

54

Johanna Müller 
Master student (just finished) 

at SDU 

• Injected protons up to eV and 
traced electromagnetic cascade 
with CRPropa 

• Can improve fit at highest energy 
bin 

• Only for low IGMFs of  G and 
 G so far 

• High resolution leads to extremely 
expensive simulations 

• Do we need dedicated software?

1018

10−20

10−18

Preliminary



Proton induced cascades?

55

Atreya Archayya 
Post Doc 
at SDU 

• We are also investigating possible 
contributions to gamma-ray spectrum of 
TXS0506+056 

• Allows us to derive constraints on the 
luminosity of protons escaping the 
source

PreliminaryPreliminary



ALP interpretation?

• Astrophysical environments considered: 

• Mixing in GRB 

• Host galaxy (starburst with high B field 
or spiral) 

• IGMF 

• Milky Way 

• EBL model: Saldana Lopez et al. 2021 

• Photon flux considerably boosted at 18 
TeV

56[Galanti et al. 2024 and 10+ other papers]

[Galanti et al. 2024]

https://arxiv.org/pdf/2210.05659
https://arxiv.org/pdf/2210.05659


ALP interpretation?

• Astrophysical environments considered: 

• Mixing in GRB 

• Host galaxy (starburst with high B field 
or spiral) 

• IGMF  

• Milky Way 

• EBL model: Saldana Lopez et al. 2021 

• Photon flux considerably boosted at 18 
TeV

57[Galanti et al. 2024 and 10+ other papers]

[Galanti et al. 2024]

https://arxiv.org/pdf/2210.05659
https://arxiv.org/pdf/2210.05659


• Host galaxy observed with JWST and HST: 

• Appears to be ordinary spiral galaxy  

• Observed edge-on 

• Strong B field unlikely 

• LHAASO observations: 

• Highest energy photon at 13 (not 18 TeV)

58

Caveats

[L
ev

an
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Galanti et al. 2024

https://arxiv.org/pdf/2302.07761.pdf
https://www.science.org/doi/10.1126/sciadv.adj2778
https://arxiv.org/pdf/2210.05659


Using the actual KM2A spectral data 
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Katrine Vølund Kennedy 
Master student at SDU 

• Fit over WCDA and KM2A with log 
parabola and EBL attenuation 
provides good fit 

• Max contribution from last data 
point to : 1.8 

• Mixing inside GRB negligible effect 
 
 
 

χ2

Preliminary



Using the actual KM2A spectral data 
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Katrine Vølund Kennedy 
Master student at SDU 

• Fit over WCDA and KM2A with log 
parabola and EBL attenuation 
provides good fit 

• Max contribution from last data 
point to : 1.8 

• Mixing inside GRB negligible effect 

• Best-fit ALP parameters give 
improvement 

χ2

Δχ2 = 11.74 − 10.14 = 1.60

Preliminary



Conclusions
• Level of EBL still uncertain but well constrained in the optical from galaxy 

number counts 

• So far: no additional contribution to EBL detected / required to explain 
observations 

• Combination of data from IACTs and the LAT yield strong constraints on the 
IGMF through non-observation of pair cascade from blazars  

• If pairs lose energy through scattering CMB photons, domain-like B fields 
weaker than  for   are ruled out 

• Magnetic fields from purely astrophysical origin can be ruled out from blazar 
observations 

• GRB221009A provides strong additional probe of IGMF with less uncertainties 

• Axion interpretation of highest energy photons observed with LHAASO KM2A 
questionable 

• Outlook: CTA observations with improved sensitivity, PSF, energy range will 
yield new constraints in the next years [Abdalla et al. (including MM) 2021]

B ≲ 7 × 10−16 G tmax = 10 yr
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https://arxiv.org/pdf/2010.01349.pdf


Axion outlook

• Better understanding of intervening magnetic fields (in IGMF, clusters, 
AGN jets, host galaxy, our own MW) helps to look for axion signatures 

• Could we look for them in AGN spectra behind mega radio halos? 

• If IGMF is large ~ 0.1 nG, photon-axion oscillation in IGMF could be 
relevant
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O U T L O O K  I N  2 0 1 7 :  S I M U L AT I O N S  O F  
T H E  C L U S T E R  M A G N E T I C  F I E L D  
• Enable to properly resolve 

dynamo amplification of 
primordial fields  

• Match the observed Faraday 
Rotation of Coma 

• At the moment: do not 
include radiative feedback or 
cooling 

• Simulating Perseus difficult 
due to the (likely) importance 
of AGN feedback
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Preliminary: 
B field (2D slice through galaxy cluster center)

[Vazza; Brunetti; Brüggen; Bonafede, submitted]



O U T L O O K  I N  2 0 1 7 :  U S I N G  T H E  C L U S T E R  M A G N E T I C  
F I E L D  F O R  P H O T O N - A L P  O S C I L L AT I O N S

• Simulation of 1015 Msun galaxy 
cluster 

• Start from 0.1nG seed field at z = 40 

• Use fraction of electron densities to 
rescale Coma magnetic field to 
Perseus
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1 0 0  L I N E S  O F  S I G H T S  
T H R O U G H  C O M A

Preliminary

Preliminary Preliminary

1 0 0  L I N E S  O F  S I G H T S  
T H R O U G H  P E R S E U S

R(r) =

✓
B0

BComa(r)

◆✓
nPerseus(r)

nComa(r)

◆ 2
3

Preliminary

[In collaboration with Franco Vazza]


