EXTREME TEV BLAZARS: IDEAL PROBES FOR IGMF?

ELISA PRANDINI (PADOVA U.) - 12.02.2025

TRIESTE 'IFPU FOCUS WEEK - INTERGALACTIC MAGNETIC FIELD: A NEW PROBE OF THE EARLY UNIVERSE'

FEW WORDS ABOUT MYSELF

MY TEAM & COLLABORATIONS

- Padova U.:

Member of the HEAP (high energy astroparticle) group

- MAGIC member since 2005
 - Extragalactic WG convener
 - MWL coordinator
 - TAC member
- CTAC/CTAO member since 2008
 - Extragalactic WG convener

COLLABORATORS: Antonio Stamerra, Talvikki HovattaCornelia Arcaro, Luca Foffano, Giacomo Bonnoli, Paolo Da Vela, Davide Miceli, Michele Doro, , Stefano Marchesi **MWL**: Claudia Raiteri, Yannis Liodakis, Ivan Agudo, Filippo D'ammando + many

FIELDS OF RESEARCH:

- Search for TeV-emitting blazars
- Characterization of the multiwavelength emission from blazars
- Quest for extreme blazars

... AND OUTREACH ACTIVITIES

00

... AND OUTREACH ACTIVITIES

My last effort: I am designing an **escape room** themed experimental astro-particle physics

→ Auger → MAGIC → KM3NET

Prototype will be presented at the ICRC25

MY RESEARCH ACTIVITY

BLAZAR DATA: A (POWERFUL) PORTAL

BLAZARS IN A NUTSHELL

Jetted AGNs with a jet closely aligned with the line of sight (counterparts of radiogalaxies) Only ~50% with known distance (lack of measurements + difficulty in detecting the host galaxy) SED spans ~20 orders of magnitude in frequency Mostly non-thermal emission

BLAZAR'S SPECTRAL ENERGY DISTRIBUTION (SED)

-

- FIRST PEAK: SYNCHROTRON EMISSION
- SECOND PEAK: INVERSE COMPTON EMISSION + HADRONIC COMPONENT(S)
- HOST GALAXY: EMERGES AT OPTICAL FREQUENCIES

RECENT HIGHLIGHTS FROM BLAZAR STUDIES

- IXPE: X-ray polarimetry
- High polarization level in blazar's jet suggest a stratified jet

THE SED CAN BE DIFFERENT!

11

THE BLAZAR SEQUENCE

- Data classified according to the _ Fermi-LAT luminosity
- Anti-correlation between the _ synchro peak position and the **luminosity** (BL Lacs)
- Trend in Compton dominance -

Ghisellini+ 2016, review: EP & Ghisellini 2022,

4LAC, Fermi Coll. 2020

HOW MANY GAMMA-RAY BLAZARS?

- 4LAC CATALOG ON AGN DETECTED BY FERMI-LAT: 2560 BLAZARS
- SYNCHROTRON PEAK DISTRIBUTION: SPANS 6 ORDERS OF MAGNITUDE IN FREQUENCY

Photon index shows a trend with synchro peak (large dispersion)

 \rightarrow LESS THAN 100 SOURCES!

HOW MANY TEV BLAZARS?

WHY?

1. THE DISTANCE EFFECT (EBL)

- Distant sources are attenuated by EBL
- Note: distant sources are all FSRQs
 - Many BL Lacs have unknown redshift!

Advances in very high energy astrophysics, Zanin & Mukherjee

2. NOT ALL BLAZARS REACH TEV ENERGIES

SED OF THE BLAZAR 3C 273

 \rightarrow IACT NEVER DETECTED IT!

3. TEV SKY EXPOSURE (IACT)

- The FoV of IACTs is limited
- Time available ~hundred hours per year
- Time granted through competitive proposals

Advances in very high energy astrophysics, Zanin & Mukherjee

TEV-BLAZARS NOW (2025) AND IN 2005!

https://www.tevcat.org,

OBSERVATIONS STRATEGY OF IACTS

Biased towards the extremes of the blazar sequence

EGAL SURVEY - CTAO

- Consists of a survey with uniform exposure of a contiguous portion of the extragalactic sky
- From the 'Science with CTA' book:
 - ¼ of the sky
 - 6 mCrab of integral sensitivity E>125 GeV
- These values and observation strategy could be revised by the CTAC team

- 1st unbiased VHE catalog
- LogN/LogS
- Serendipitous discoveries
- Variable sources

21

NOT ONLY FERMI-LAT

Marchesi, Iuliano, EP + 2025

Fermi-LAT observations are flux limited: dedicated studies on *Fermi* non-detected sources provide complementary sources to be considered for IACTs

- BZCAT + X-ray detection (XMM/Swift/Chandra or eROSITA): 2435 sources
- 1007 sources non detected in gamma rays
- Fainter in X-ray thanthe gamma-ray detected
- Synchrotron peak covers the different classed of blazars

(EXTREME) BLAZAR SPECTRA

1E 0317.0+1835	Centaurus A	PKS 0447-439
1ES 0033+595	GRB 180720B	PKS 0548-322
1ES 0229+200	GRB 190114C	PKS 0625-354
1ES 0347-121	GRB 190829A	PKS 1424+240
1ES 0414+009	H 1426+428	PKS 1440-389
1ES 0806+524	H 2356-309	PKS 1441+25
1ES 1101-232	🦉 I Zw 187	PKS 1510-089
1ES 1440+122	IC 310	PKS 2005-489
1ES 1959+650	KUV 00311-1938	PKS 2155-304
1ES 2037+521	M 82	PMN J0152+0146
1ES 2344+514	M 87	RGB J2243+203
1H 0658+595	MG2 J194359+2118	RX J0648.7+1516
1H 1013+498	MG2 J204208+2426	RX J0847.1+1133
1H 1720+117	MG4 J200112+4352	52 0109+22
IRXS J101015.9-311909	MS 13121-4221	§ 53 0218+35
3C 264	Mkn 180	§ 53 1741+19
3C 279	🍯 Mkn 421	§ 54 0954+65
3C 66A	Mkn 501	§ 55 0716+714
3C 66B	NGC 1275	SHBL J001355.9-185406
4C +21.35	NGC 253	TXS 0210+515
AP Librae	NVSS J073326+515355	TXS 0506+056
B2 1215+30	PG 1218+304	TXS 0518+211
B2 1420+32	PG 1553+113	TXS 1515-273
B3 2247+381	PKS 0301-243	W Comae
BL Lacertae		

Spectra from STeVeCAT (Greaux+)

GAMMA-RAY OPACITY

FRANCESCHINI & RODIGHIERO 2008

EP Science 2019

FRANCESCHINI & RODIGHIERO 2008

FRANCESCHINI & RODIGHIERO 2008

$$F(E_{\gamma_0}) = F_0(E'_{\gamma_0}(z_E))e^{-\tau(E_{\gamma_0}, z_E)},$$

these are the absorbed photons that convert into pairs and possibly reappears as reprocessed emission at low energy

FRANCESCHINI & RODIGHIERO 2008

$$F(E_{\gamma_0}) = F_0(E'_{\gamma_0}(z_E))e^{-\tau(E_{\gamma_0}, z_E)},$$

gamma-ray horizon

- the EBL induced cutoff is strongly zdependent
- For sources at z=1, 100 GeV gamma rays are already attenuated by a factor 1/e
- at z=0.03, the same attenuation is for gammas at 10 TeV

EXAMPLES:

Main message: Our ability of reconstructing **TeV spectra** is strongly **redshift dependent**

CURIOSITY: CONSTRAINING BLAZARS DISTANCE

Maximum Distance can be inferred from TeV+ *Fermi*-LAT data

EP+ MNRAS 2010

EXTREME BLAZARS - A CLASSICAL DEFINITION

The classical definition of extreme blazar is based on the synchrotron peak location (> 1 keV)

- Extreme (synchro) blazars are ideal targets for IACTs
- Standard blazar models constraint the high-energy SED peak below 1 TeV

SPECTRAL SIGNATURES OF EXTREMENESS

36

Unlike other BL Lac object classes, the <u>host galaxy</u> is well visible in extreme blazars!

SPECTRAL SIGNATURES OF EXTREMENESS: EXTREME TEV

- Challenge for blazar modeling

Hardness of the 0.1 - 1 TeV spectrum Γ_y <2

Implies a <u>hard accelerated particle spectrum</u> (competition between energy gain and loss, usually spectra indices ~ 2)

Many scenarios: shock acceleration, turbulent acceleration, shear acceleration, reconnection

Peak of radiation at energies > 1 TeV

 Extremely promising for propagation studies (gamma ray cosmology)

37

SEARCH FOR EXTREME TEV BLAZARS WITH MAGIC

AT LEAST TWO NEW SOURCES WITH HARD-TEV SPECTRUM

 Four sources firmly detected and one hintof-signal

MAGIC Coll. ApJS 2020

X-RAY VIEW OF A SAMPLE OF EXTREME **BLAZARS**

MODERATE (FACTOR OF A FEW) VARIABILITY IN X-RAY

https://www.swift.psu.edu/monitoring/

MODELING THE MAGIC SAMPLE

✓ 3 models tested an none is favored

 More data needed in particular in both the hard X-ray and VHE gamma-ray regimes

magenta line: proton-synchrotron model

Blue line: SSC model Black line: alternative leptonic model (spine-layer)

New IGMF limits from TeV observations

Hard TeV source: 1ES 0229+200

Input: gamma-ray spectrum and variability pattern

Comparison with simulations

No evidence for delayed emission at lower energies

The non-detection of variability at low gamma-ray energies imposes a **lower bound of B > 1.8 × 10⁻¹⁷ G** (B > 10–14 G assuming a short correlation length)

MAGIC Coll. 2022

Faintness of the flux severely limits the ability to properly assess the source variability

MAGIC Coll. 2022

42

COMING BACK TO THE MAGIC HARD TEV SOURCES STUDY:

Source	Observation Periods	Time (hr)
TXS 0210+515	2015, 2016, 2017	28.6
TXS 0637-128	2017	16.4
BZB J0809+3455	2015	21.8
RBS 0723	2013, 2014	45.3
1ES 0927+500	2012, 2013	26.2
RBS 0921	2016	13.9
1ES 1426+428	2010	6.5
	2012	8.7
	2013	5.9
1ES 2037+521	2016	28.1
RGB J2042+244	2015	52.5
RGB J2313+147	2015	11.5
1ES 0229+200	2013–2017	117.5

- Observation campaigns are "slow"
- Extreme blazars are faint sources!

PG1553+113

- z = 0.43
- Bright HBL
- Observed with MAGIC + MWL (MAGIC coll. 2024)
- High variability (factor ~6)
- Timescale: down to daily
- Non-uniform coverage (due to visibility and monitoring strategy)

PERIODICITY IN PG 1553+113 WITH MAGIC

- 2.2y periodicity in Fermi-LAT and, possibly, in optical
- Monitored regularly with MAGIC since 2015

PERIODICITY MODELS

GEOMETRICAL MODELS

jet precession or helical jet

change in Doppler factor: simplest models foresee an <u>achromatic variability</u>

e.g. Danai et al. 2018;

ACCRETION MODULATION

accretion is modulated

e.g. Gracia et al. 2003

Double/multiple **peak sub-structure** expected in the light curve

DYNAMICAL MODELS

Instabilities in the jet due to stresses induced by a secondary (jetted?) black hole orbiting around the jetted black hole

Double/multiple **peak sub**structure expected in the light curve

46

e.g. Tavani et al. 2018

VARIABILITY AND CORRELATION STUDIES

0.6 0.8

X-ray flux (erg/cm²/s)

10-10

0.0

0.6 0.8 1.0

X-ray flux (erg/cm²/s)

- No periodicity in VHE gamma rays and x-rays, confirmed periodicity in HE gamma rays
- Intra-band correlations: complex interplay between bands
 - Multiple zone emission model

PG1553+113

DATATAKING IS ONGOING!

AN UNEXPLORED (?) POSSIBILITY: NON EXTREME, RELATIVELY DISTANT BLAZAR (HBL) FOR IGMF

- Are extreme blazars the 'ideal targets'?
- Should we consider other source classes (apart from GRBs?)

→ EP, Paolo DV, Davide M – work in progress!

thank you!

50

BACKUP

MKN 421: MAGIC-IXPE CONNECTIONS

Discrete correlation function

Mkn 421 (X-ray - VHE)

 2σ band 1.5 3σ band 4σ band 1.0 0.5 DCF 0.0 -0.5-1.0-1.5-15-1010 -50 5 15 20 -20Time Lag [day] 52

X-RAY (SWIFT) -VHE: STRONG HINT OF CORRELATION

→ TIME INTERVAL: MAY-JUNE 2022

→VHE CO-SPATIAL WITH X-RAY

Strong connection between X-ray and VHE, pointing to a common origin (typical for HSPs) → Simultaneous coverage is crucial to probe the physics of the emitting region

E. Prandini - IXPE and MAGIC synergies

 $\nu \, [\text{Hz}]$

RECENT HIGHLIGHTS: A

PAPER ON MAGIC+IXPE SIMULTANOUS OBSERVATIONS IN 2022 (MAGIC+ 2024)

3 IXPE POINTINGS (LIODAKIS+ 2022, LISALDS+ 2024)

POLARIZATION DEGREE

- X-RAY ~FACTOR 2 HIGHER THAN IN OPTICAL
- DROP IN POLARIZATION FOR IXPE-3

X-RAY POLARIZATION ANGLE

- IN LINE WITH OPTICAL
- PARALLEL TO RADIO JET ORIENTATION

 \rightarrow Shock acceleration in an energy stratified jet

RECENT HIGHLIGHTS: MKN 501

 ROLE OF MAGIC: CONSTRAIN THE SECOND ZONE PROPERTIES, THE SAME RESPONSIBLE FOR X-RAY EMISSION.

SHORTEST VARIABILITY TIMESCALE IN PG 1553+113

STUDY BASED ON XMM OBSERVATIONS

- CHARACTERIZATION OF VARIABILITY AT
 DIFFERENT SCALES
- SHORT (INTRA-NIGHT) VARIABILITY: VERY USEFUL TO CONSTRAIN THE EMISSING REGION FOR CAUSALITY REASONS

 $\leq \frac{c \, t_{var} \, \delta}{}$ R

T_var assumed as the doubling flux time \rightarrow 2.4 ks 55

NEUTRINOS FROM EXTREME BLAZARS?

The hadronic model tested (proton synchrotron) does not foresee a detectable neutrino output

The cascade electrons loose their energy via IC scattering of the CMB photons within the distance

$$D_e = \frac{3m_e^2 c^3}{4\sigma_T U'_{\text{CMB}} E'_e} \simeq 10^{23} (1 + z_{\gamma\gamma})^{-4} \left[\frac{E'_e}{10 \text{ TeV}}\right]^{-1} \text{ cm.}$$

SED

