New clues on the (primordial) origin of cosmic magnetism from the low redshift Universe

(Bologna Uni.)

ME & MY NETWORK

Cosmological Simulations:

S. Mtchedlidze (UniBO), C. Gheller (IRA)

Radio observations:

E. Carretti (IRA), S. O'Sullivan (UniMA), T. Vernstrom (CSIRO), V. Cuciti (UniBO), K. Rajpurohit (CFA)

(CERN), A. Neronov (APC)

SOME TAKE HOME MESSAGES:

- Detection of extended IGMFs well beyond clusters
 - Modelling these observations with simulations discards purely astrophysical origin scenarios for IGMFs models and prefers primordial large-scale models

Constraints for IGMFs are below what is presently obtained with CMB. Powerful connections with SGWB and the very early Universe ($\leq \mu s$)?

"Primordial" seeding

WHAT'S THE ORIGIN OF COSMIC MAGNETISM?

WHY NOT USING CLUSTERS OF GALAXIES?

 $B \sim 1 - 5\mu G$ at least up to a radius of ~ 2 Mpc Magnetic energy $\sim 1 - 2\%$ Gas energy

WHY NOT USING CLUSTERS OF GALAXIES?

K. DOLAG (PHD THESIS 2000)

WHY NOT USING CLUSTERS OF GALAXIES?

Filaments: no or little dynamo, memory

of seed B_0 is **preserved**

Clusters: <u>dynamo</u> <u>amplification</u>,

memory of seed B_0 is **lost**

blue/yellow= B-field amplitude

HOW TO DETECT EXTRAGALACTIC B-FIELDS

COSMOLOGICAL MHD SIMULATIONS

K. DOLAG (CA. 1999)

Fig. 7. A two-dimensional cut through a cosmological box simu-

M. BRUGGEN (2005)

(Ideal) MHD equations on a comoving grid.

(+ **source terms** from star/AGN feedback)

Large volumes: statistics and lightcones \rightarrow comparison with radio surveys

Ideal for discontinuities (shocks), turbulence and hydro-MHD phenomena.

zoomed sims: plasma physics → comparison with single objects

erc https://cosmosimfrazza.eu/MAGCOW

COSMOLOGICAL SIMULATIONS enzo

FV + 2017, 21

INTRACLUSTER BRIDGES

- relativistic electrons and magnetic fields $(B \sim 0.5 \mu G)$ on scales never probed so far.
- both components are present <u>before the</u> <u>cluster merger!</u>

• LOFAR discovery of a 3.5Mpc long bridges in between galaxies A399 and A401

INTRACLUSTER BRIDGES

- How common? (rare!)
- Are these cosmic filaments? (now: no. in the past: yes)

A few more known cases (sometime with uncertain identification)

- ~ 1 Gyr "transient" with large solenoidal turbulence (\rightarrow FERMI II)

INTRACLUSTER BRIDGES - SIMULATIONS

Best model: Adiabatic Stochastic Acceleration (Brunetti & Lazarian 2016)

BRUNETTI & VAZZA 2020 PRL

MEGA RADIO HALOS

ZwCI 0634.1+4750

Abell 697

What is their origin?

Abell 665

New LOFAR detection of unprecedently low surface brightness radio emission in 4 clusters.

Abell 2218

The emission probes a ~ 30 larger cluster volume than classical halos!

CUCITI ET AL. 2022 NATURE

MEGA RADIO HALOS - SIMULATIONS

Age = 8.9 Gyr

Age = 7.9 Gyr

Age = 11.1 Gyr

Age = 12.4 Gyr

Age = 13.3 Gyr

200 400 600 800 x [Cell number]

new ENZO-MHD simulation a massive cluster

Lagrangian tracer particles to track history of gas ending up in the Mega Halo region

from the history of thermodynamical quantities, we simulate the energy evolution of **CR** electrons carried by the fluid

BEDUZZI, FV, BRUNETTI CUCITI ET AL. 2023, 2024 A&A

MEGA RADIO HALOS

Numerical integration of electrons acceleration/losses for ~ 10⁵ – 10⁶ Lagrangian passive tracers (e.g. Donnert+2014)

$$\frac{\partial N(p)}{\partial t} = \frac{\partial}{\partial p} \left[H(p)N(p) + D_{pp} \frac{\partial N(p)}{\partial p} \right] + Q_{inj}(p,t)$$

MEGA RADIO HALOS

THE RADIO COSMIC WEB: <u>SYNCHROTRON EMISSION</u>

Most of baryons predicted to be in **filaments**.

They must have been shocked at least once $(\mathcal{M} \ge 10)$

If **diffusive shock acceleration** works:

• $I(\nu) \propto \nu^{-\alpha}$ spectrum,

$$\mathscr{M} = \sqrt{\frac{1-\alpha}{-1-\alpha}}$$

$$P_{sync} \propto \xi_e(\mathcal{M})B^2$$

• $\xi_e(\mathcal{M})$ electron. accel. efficiency (~ $10^{-5} - 10^{-2}$?)

THE RADIO COSMIC WEB: <u>SYNCHROTRON EMISSION</u>

<u>Vernstrom</u> et al.2021: stacking of >200,000 pairs of halos in MWA survey

>5o detection of the statistical excess of radio emission

compatible with synchrotron from shocks around/in filaments.

PDF of radio flux

VERNSTROM ET AL. 2021 MNRAS

THE RADIO COSMIC WEB: POLARISED SYNCHROTRON EMISSION

All other (conceivable) alternative explanations for the emission ruled out.

Compatible with radio emission from the shocked cosmic web Simulations reproduce the stacking if $B \sim 30 - 50$ nG in filaments.

Stacking of 600,000 pairs of halos and detected >3-4o polarised emission $(p \sim 40 - 70\%)$.

VERNSTROM ET AL. 2023 SC. ADV.

THE RADIO COSMIC WEB : VIA STACKING

WILL THE SKAO DO BETTER?

A somewhat optimistic prediction from ~2015:

INTRACLUSTER BRIDGES: The SKA-LOW survey should <u>triple</u> the number of intracluster objects compared to LOFAR-HBA at the moment.

COSMIC FILAMENTS: SKA-LOW will allow more resolved and deeper stacking studies, and <u>image the</u> "tip of the iceberg" of the full distribution. The combination with SKA-MID should allow polarisation cross-matching and better understand the emission mechanism

SIMULATING STOCHASTIC PRIMORDIAL MAGNETIC FIELDS

spectra of **B-fields** at $z \sim 10^3$

Modelling of the Cosmic Microwave Background constrains amplitude of power

$P_B(k) \propto k^{\alpha_B} \ (-2.9 \le \alpha_B \le 2.0)$

SIMULATING STOCHASTIC PRIMORDIAL MAGNETIC FIELDS

Large differences of B-fields in filaments/voids

FV, PAOLETTI, BANFI, FINELLI ET AL. 2021 MNRAS

SIMULATING STOCHASTIC PRIMORDIAL MAGNETIC FIELDS

THE MAGNETIC COSMIC WEB WITH FARADAY ROTATION

Faraday rotation

A magnetic field rotates the polarization of light waves that pass through it.

the Faraday Rotation effect:

RM = 0.812
$$\int_{z}^{0} \frac{n_e(z')B_{\parallel}(z')}{(1+z')^2} \frac{dl}{dz'} dz'$$

THE MAGNETIC COSMIC WEB WITH FARADAY ROTATION

Excess ARM in random pairs: cosmic web contribution?

THE MAGNETIC COSMIC WEB WITH FARADAY ROTATION

- Analysis of **1016 lines of sight** with $0 \le z \le 3$ in LOTSS DR2 ,
- **Galactic foreground** (MAD filtering <0.5° radius, of Hutschenreuter+22 map):
- Removal of LOS with known halos contaminating within r<R100 exclusion</p>
- "Residual" Rotation Measure:

b|>25°

 $RRM_f = RM - GRM$

$$\left\langle RRM^2 \right\rangle^{1/2} = \frac{A_{rrm}}{(1+z)^2} + \left\langle RRM_f^2 \right\rangle^{1/2}$$

- Analysis of **1016 lines of sight** with $0 \le z \le 3$ in LOTSS DR2 ,
- **Galactic foreground** (MAD filtering <0.5° radius, of Hutschenreuter+22 map):
- Removal of LOS with known halos contaminating within r<R100 exclusion</p>
- "Residual" Rotation Measure:

trend with redshift until $z \sim 1$: cannot be of galactic origin

flattening for $1 \le z \le 3$

|b|>25°

 $RRM_f = RM - GRM$

- Analysis of **1016 lines of sight** with $0 \le z \le 3$ in LOTSS DR2 ,
- **Galactic foreground** (MAD filtering <0.5° radius, of Hutschenreuter+22 map):
- Removal of LOS with known halos contaminating within r<R100 exclusion
- "Residual" Rotation Measure:

Uniform B model (0.1nG)

|b|>25°

 $RRM_f = RM - GRM$

- Analysis of **1016 lines of sight** with $0 \le z \le 3$ in LOTSS DR2 ,
- **Galactic foreground** (MAD filtering <0.5° radius, of Hutschenreuter+22 map):
- Removal of LOS with known halos contaminating within r<R100 exclusion
- "Residual" Rotation Measure:

Uniform B model (0.1nG)

purely astrophysical seeding

(AGN+stellar winds)

|b|>25°

 $RRM_f = RM - GRM$

- Analysis of **1016 lines of sight** with $0 \le z \le 3$ in LOTSS DR2 ,
- **Galactic foreground** (MAD filtering <0.5° radius, of Hutschenreuter+22 map):
- Removal of LOS with known halos contaminating within r<R100 exclusion</p>
- "Residual" Rotation Measure:

Uniform B model (0.1nG)

Primordial model with $P_R \propto k^-$

purely astrophysical seeding

(AGN+stellar winds)

|b|>25°

 $RRM_f = RM - GRM$

- Analysis of **1016 lines of sight** with $0 \le z \le 3$ in LOTSS DR2 ,
- **Galactic foreground** (MAD filtering <0.5° radius, of Hutschenreuter+22 map):
- Removal of LOS with known halos contaminating within r<R100 exclusion</p>
- "Residual" Rotation Measure:

Primordial model with $P_R \propto k^{-1}$

Primordial model with $P_B \propto k^{-1}$ +astrophysical seeding

|b|>25°

 $RRM_f = RM - GRM$

- Analysis of **1016 lines of sight** with $0 \le z \le 3$ in LOTSS DR2 ,
- **Galactic foreground** (MAD filtering <0.5° radius, of Hutschenreuter+22 map):
- Removal of LOS with known halos contaminating within r<R100 exclusion</p>
- **"Residual" Rotation Measure:**

Primordial model with $P_B \propto k^{-1}$ +astrophysical seeding

|b|>25°

 $RRM_f = RM - GRM$

- Analysis of **1016 lines of sight** with $0 \le z \le 3$ in LOTSS DR2 ,
- **Galactic foreground** (MAD filtering <0.5° radius, of Hutschenreuter+22 map):
- Removal of LOS with known halos contaminating within r<R100 exclusion</p>
- **"Residual" Rotation Measure:**

improvement over CMB limits
(Paoletti & Finelli 19) :Improvement over CMB limits
(Paoletti & Finelli 19) :•
$$n_B = -1$$
1.87nG $\rightarrow \sim 0.4nG$ • $n_B = 0$ 0.34nG $\rightarrow \sim 0.07nG$ • $n_B = 1$ 0.04nG $\rightarrow 0.004nG$

|b|>25°

 $RRM_f = RM - GRM$

Bottom line:

and $\langle B_{1Mpc}^2 \rangle^{0.5} \leq 0.4 \text{nG}$

Notice:

- still wiggles and scatter in data
- procedure to remove the galactic FG is not settled
- interpretation depends on simulations (e.g. Bondarenko+24, Blunier & Neronov 24)

stil...enormous potential, which the SKA will fully exploit

 observed Residual Faraday Rotation implies volume filling B-fields up to $z \sim 3$, best explained by "primordial" models with $P_R \propto k^{-1}$

GALACTIC FOREGROUND MODEL: different possible approaches can lead to slightly different estimates. Small-scale galactic contributions important?

DIFFERENCE BETWEEN SIMULATIONS (or groups looking at the same simulations): e.g. Bondarenko+24 vs Blunier & Neronov 24 using IllustrisTNG

The future: the Square Kilometre Array will allow a finer and more reliable reconstruction of the Galactic FG model (also using FRBs).

- Simulations of <u>causal</u> primordial B-fields with a finite maximum scale λ_B (initial conditions from Pencil)
- to fit RRM data, small scale causal models
 require normalisation > CMB allowed limits

MTCHEDLIDZE ET AL. 2024

- Low-z radio data now more constraining than
- Detection of $\lambda_B \ll 1 \text{Mpc}$ fields would be inexplicable also for astrophysical models!

NERONOV, FV, MTCHEDLIDZE & CARRETTI, SUBMITTED

HELICAL PRIMORDIAL FIELDS

$$H = \left[\overrightarrow{A} \cdot \overrightarrow{B} d^3 x \right]$$

(conserved in high conductive plasma)

- First simulations of helical magnetic fields in cosmology. Does helicity lead to different (and detectable) large-scale IGMFs?
- Detecting primordial helicity would directly imply parity violation and explain matter-antimatter asymmetry!

MTCHEDLIDZE+22, 23

- H=0
- $H = T \Phi^2$
- $H = \pm 2\Phi_1\Phi_2$

101 : 10⁰ = 10⁻¹ 10^{-2} -10^{-2} -10^{-1} -10^{0} -10^{1}

CAN FEEDBACK OUTSHINE PRIMORDIAL B-FIELDS?

Filling factors & strength of magnetic fields ejected by galaxies not well constrained.

Uncertainties related to galaxy formation & feedback

Donnert, Dolag et al. 2009

Fiducial

 E_{low} feedback off

SMBH feedback off

Feedback & metal cooling off

ى 11--12 <u>8</u> -13 <u>o</u> -14-15-16

-8

-9

-10

Aramburo-Garcia, Bondarenko et al. 2021,22

CAN FEEDBACK OUTSHINE PRIMORDIAL B-FIELDS?

CAN MAGNETISED OUTFLOWS OUTSHINE PRIMORDIAL B-FIELDS?

SEEDING OF ELECTRONS (AND B-FIELDS) BY RADIO JETS

From the age & local conditions (ρ, B, T) we can compute with good approximation the radio emission

FV ET AL., 2025 A&A

ASTROPHYSICAL SEEDING OF B-FIELDS

updated view on RM from the best purely astrophysical scenario:

PRIMORDIAL VS ASTROPHYSICAL SEEDING OF B-FIELDS

FV ET AL., 2025 A&A

PRIMORDIAL VS ASTROPHYSICAL SEEDING OF B-FIELDS

PRIMORDIAL VS ASTROPHYSICAL SEEDING OF B-FIELDS

STACKING

LOWER LIMITS FROM BLAZARS

Deflection by IGM magnetic fields can explain the suppression of (secondary) inverse-compton-cascade from blazars at 1-100 GeV

(Neronov & Vovk 2010, Arlen+2014; Mayer+2016...)

Observed FERMI spectra rejects purely astrophysical scenarios: >60% of filling factor needed!

TJEMSLAND, MEYER, FV 2024 APJ

CAVEATS...

- The effect of AGN feedback on the IGM (temperature, metallicity, filling factor...) is very different even for all simulations on the market
- This must produce big differences magnetisation too

Viallescusa et al

CAMELS project

CAVEATS...

reproduce $z \sim 0$ galaxy properties) predict hugely different

Even the most sophisticated feedback recipes (calibrated to evolutions of AGN and of the Circumgalactic medium (Lau+2025)

Average jet power of $P_i \sim 10^{46} \text{erg/s}$ active for $\tau \sim 1.9 \text{Gyr}$. The total deposited energy is $\sim 8 \cdot 10^{62} \text{erg}$ $\rightarrow \Delta Mc^2 \sim 10^9 M_{\odot}c^2$. Association with the $z \sim 0.8$ quasar in the region $(M_{\text{quasar}} \sim 2 \cdot 10^8 M_{\odot})$ is thus impossible. Only other possible host is a RE AGN in a $M_* \sim 6.7 \cdot 10^{11} M_{\odot}$ galaxy at $z \approx 0.89$ in a filament. **<u>PUZZLES</u>**: Lack of precession for 2 Gyr? Perfect collimation? Lack of interaction with environment?

Intergalactic magnetism in a $\gamma\text{-ray}$ beam as a model of Porphyrion

Can Porphyrion be a jet-like feature produced by a beam of very-high-energy *y*-rays producing electron-positron pairs in IGMs?

• no detection of γ -ray emission with FERMI-LAT implies $B \ge 8nG$ (comoving)

$$\nu_{s} \simeq 100 \left[\frac{B}{10 \text{ nG}} \right] \left[\frac{E_{e}}{30 \text{ GeV}} \right]^{2} \text{ MHz},$$

$$\mathbf{10^{-1}}$$

$$E_{\gamma} \simeq 6 \left[\frac{E_{e}}{30 \text{ GeV}} \right]^{2} \text{ MeV}.$$

$$\mathbf{10^{-1}}$$

$$\mathbf{I0^{-1}}$$

$$\mathbf{I0^{-1}$$

$$\mathbf{I0^{-1}}$$

$$\mathbf{I0^{-1}$$

$$\mathbf{I0^{-1}}$$

$$\mathbf{I0^{-1}}$$

$$\mathbf{I0^{-$$

Idea:

a misaligned TeV blazar which deposited pairs along its propagation $D_{\gamma} \sim 1 - 10$ Mpc for 10 - 30TeV interacting with EBL (z=1)

Electrons and positrons injected with $E_e \sim (0.1-1) \mathrm{E}_{\gamma}$

IC cooling with CMB:

$$t_{\rm cool} \simeq 1.5 \left[\frac{E_e}{30 {\rm ~GeV}} \right]^{-1} {\rm Myr}$$

- This cooling time is close to the light travel time across the extent of Porphyrion! $t_{cool} \sim L_j/c$
- it implies γ-ray luminosity of the AGN has decreased over the last ~ 10Myr (below FERMI limits)

what is providing $\geq 8nG$ magnetic fields?

The γ -ray beam must be crossing cosmic filaments

4.55e-10 7.71e-10 1.62e-09 3.92e-09 1.00e-08 2.65e-08

simulations with primordial seed field $\langle B \rangle_{1Mpc} = 0.3 \text{nG}$ (compatible with RRM and stacking data)

Distribution of magnetic field strength along 4 filaments connected to $\sim 10^{12} M_{\odot}$ halos in cosmological

Is Porphyrion just a weird outlier? No, there are 110 straight jets >3Mpc long

More puzzles:

- no dependence on environment:
- ~1/3 of them in clusters!
- no dependence on redshift
- longest jets have smaller bending

CONNECTIONS WITH STOCHASTIC GRAVITATIONAL WAVE BG

B-fields implied by radio data, compatible with CMB and γ -ray constraints might also explain the **SGWB detected by PTA**! (caveat: not easy to simulate evolution from $z \sim 10^{12}$ to $z \sim 10^3$)

MORE CAVEATS...

- <u>MHD assumption</u>? Reasonable at most scales and epochs we are concerned with. However, kinetic effects can further induce magnetic field generation at very small scales (in voids, too?)
- <u>Resolution?</u> regimes with finite resolution simulations. Strong dynamo not expected in filaments. But power on small scales for causal primordial spectra might be underestimated
- **<u>Coupling with cosmological initial conditions?</u> See recent** works by Ralengakar, Pavicevic... : B-fields impact the initial baryon velocity fields and affect structure growth (and Ly- α). Likely a correction to the interpretation of RRM data.

Always hard to make extrapolation for high R_M

- Detection of extended IGMFs well beyond clusters
 - Modelling these observations with simulations discards purely astrophysical origin scenarios for IGMFs models and prefers primordial large-scale models

Constraints for IGMFs are below what is presently obtained with CMB. Powerful connections with SGWB and the very early Universe ($\leq \mu s$) ?

