

Università degli Studi di Padova

MAGNETIC MONOPOLES IN COSMIC MAGNETIC FIELDS: ACCELERATION AND CONSTRAINTS

Speaker: Michele Doro, Takeshi Kobayashi, Daniele Perri

DP, K. Bondarenko, M. Doro, T. Kobayashi <u>Phys. Dark Univ. 46 (2024), 101704</u>

DP, M. Doro, T. Kobayashi <u>arXiv:2502.xxxx</u>

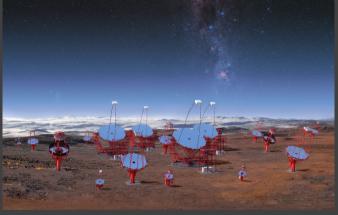
ABOUT MYSELF

- Associate professor at University of Padova
 - Physics Laboratory 1 for Physics BSc
 - General Physics
 - PhD: Remote atmospheric sensing (for astronomy)
- Main collaborators (glimpse at some names):
 - Padova: Elisa Prandini, Ivana Batkovic, Cornelia Arcaro, Davide Miceli, Tommaso Dorigo
 - Abroad: Roberta Zanin, Giacomo D'Amico, Miguel Angel Sanchez Conde, Paolo Giommi, Markus Gaug, ...
 - For this work: Takeshi Kobayashi, Daniele Perri

AI MADE A POSTCAST ON ME 😳

notebooklm.google.c	com	ſ
ଲ NotebookLM	÷	(;)
Michele Doro: C 佔 卬	þ	:
00:37 / 20:00		
NotebookLM		

<u>https://notebooklm.google.com</u>
 <u>/notebook/520db653-64f6-</u>
 <u>4925-9a90-98c3ad79e930/audio</u>



GAMMA-RAY ASTRONOMY

MAGIC: 2003-now

- Mirror and Calibration
- Fundamental Physics: dark matter, ALPs, now blazars

CTAO 2006--now

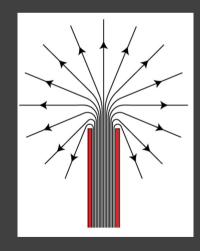
- Fundamental physics searches
- Atmospheric Calibration

SWGO 2018--now

- Fundamental physics searches
- PeV-simulation outer array

From GeV to PeV...

Questions to Takeshi ...



DIRAC'S CLASSIC MONOPOLE

- He was trying to find a way to have a natural explanation for the quantization of the electric charge
- In 1948 he proposed a model for a monopole made of one semi-infinite string solenoid (with M=2.4 GeV)
- Magnetic charge:

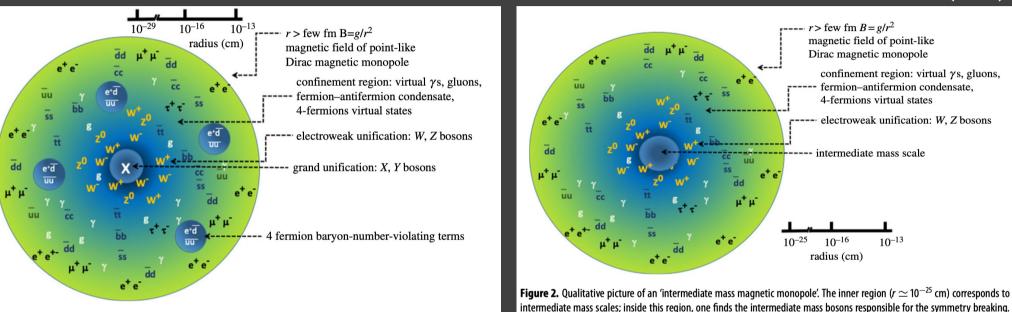
$$g = 2\pi n/e = ng_{\rm D}$$

• Maxwell's equations become symmetric

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = 0$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

Dirac himself said of MM "One would be surprised if Nature had made no use of it"

T'HOOFT AND POLIAKOV


- In 1974 'T Hooft and Poliakov proposed a model of monopoles as topological defects, which was naturally appearing during phase transitions
- ∘ Monopoles are inevitable predictions of Grand Unified Theories: $SU(5) \rightarrow SU(3) \times SU(2) \times U(1) \rightarrow$ $SU(3) \times U(1)$
- o MM
 - GUT (early Universe) M>10^16 GeV
 - Intermediate Mass (later) M>10^6 GeV
- The 'T Hooft Poliakov monopole is a zerodimensional solitonic solution of the vacuum manifold.

GUT AND INTERMEDIATE MM

Patrizii+ Ann.Rev.Nucl.Part.Sci. 65 (2015)

The outer regions are as in figure 1, but without terms violating baryon number conservation in the fermion-antifermion

condensate.

Figure 1. Qualitative picture of the internal structure of a GUT magnetic monopole (modified figure from [11]). The different regions are described in the text.

GUT MM foresees proton decay

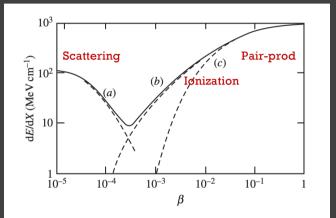
Inside the core, all the states of the GUT are excited.

9

M. Doro - Fundamental Physics with IACTs - CTA School 2024

ACTUALLY, TOO MANY MAGNETIC MONOPOLES

COSMOLOGICAL MONOPOLES indigestion


- Monopoles are produced in the early universe during phase transition.
- The abundance of produced monopoles can easily overdominate the energy density of the universe.
- Inflation provides a good solution to the problem.

GALACTIC MONOPOLES indigestion/PARKER BOUND

- The Galaxy presents a magnetic field of ~muG
- The Galactic magnetic field accelerates the monopoles losing its energy;
- The survival of the field provides a bound on the monopole flux today

ENERGY LOSS IN MATTER

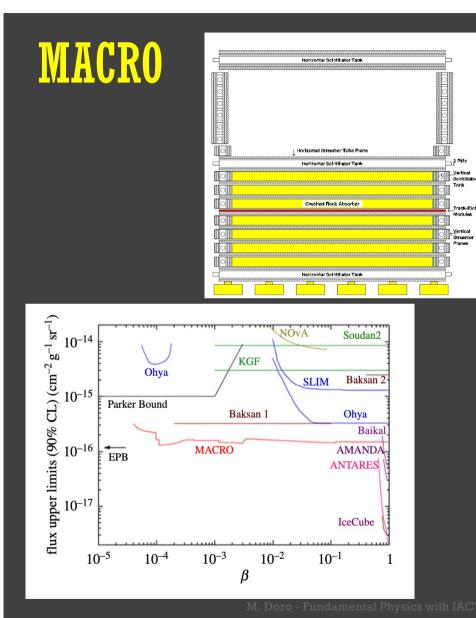
gy loss (in MeV cm⁻¹) mechanisms of $g = g_D$ MMs in liquid hydrogen versus β . Cu hydrogen atom scattering; curve (b) corresponds to interactions with energy level on energy loss [12].

Patrizii+ Ann.Rev.Nucl.Part. Sci. 65 (2015)

- When MMs cross a medium, the varying magnetic field induces a strong electric field. MMs are treated as electrically charged particles with an equivalent speeddependent electric charge of gβ.
- The search for MMs is naturally based on their speed at the detector.
 - For $\beta \gtrsim 10^{-3}$ the energy loss is mostly through elastic collisions.
 - For $10^{-3} \leq \beta \leq 10^{-2}$, the medium is seen as a free degenerate gas of electrons (energy level crossings)
 - Relativistic MMs with $\beta \ge 0.1$ ionize and excite atoms. The yield is ~ 4700 times that of a minimum ionizing particle.
 - Ultra-relativistic MMs, with $\gamma > 10^4$, lose energy mostly by pair production and photo-nuclear radiative processes

DIRECT DETECTION OF MONOPOLES

- There are different strategies used for the direct observation of magnetic monopoles:
 - Induction of electric currents into a coil;
 - Energy loss by ionization (Ex. MACRO, IceCube);
 - Catalysis of nucleon decays (only for GUT monopoles).


	Citation: R.L. W	/orkman <i>et al.</i> (Pa	rticle Data Group),	Prog. Theor. Exp. Pl	hys. 2022 , 083C01 (2022)	and 2023 update	
	Magr	netic M	onopole	Search	nes		
	See the related review(s): Magnetic Monopoles						
	Monopole	Production	Cross Section	— Accelera	ator Searches		
	X-SECT (cm ²)	MASS (GeV)	CHG ENERG (g) (GeV	and the second second second	DOCUMENT ID	TECN	
Densit	nsity — Matter Searches						

https://pdg.lbl.gov/

12

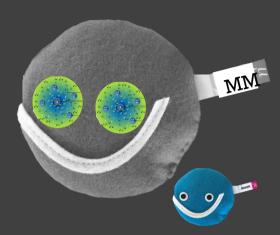
DENSITY	CHG (g)	MATERIAL	DOCUMENT ID		TECN
< 9.8E - 5/gram	\geq 1	Polar rock	BENDTZ	13	INDU
< 6.9E - 6/gram	>1/3	Meteorites and other	JEON	95	INDU
< 2.E - 7/gram	>0.6	Fe ore	¹ EBISU	87	INDU

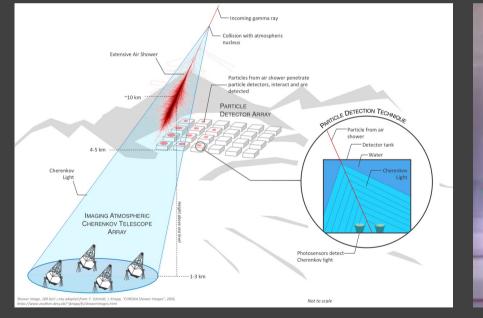
Monopole

- The Monopole, Astrophysics and Cosmic Ray Observatory (MACRO) was a dedicated instrument for MMs at LNGS until 2000.
- MACRO was composed of three subdetectors, sensitive to different MM speeds, operated in combination:
 - o scintillation counters
 - o limited streamer tubes
 - nuclear track detectors
- Upper bounds between $4 \times 10^{-5} \le \beta$ < 0.99 at around 1.4×10^{-16} cm-2s-1sr-1 for masses $\ge 10^{16}$ GeV.

SEARCHES AT ACCELERATORS

- The ATLAS experiment sought gD MMs with masses of up to 2.5 TeV .
- MM masses as large as 6 TeV have been explored by the MoEDAL experiment*, which has set upper limits to the production of MMs with charges as large as 5gD considering Drell-Yan process


*MoEDAL (Monopole and Exotics Detector at the LHC) is a particle physics experiment at the Large Hadron Collider (LHC)



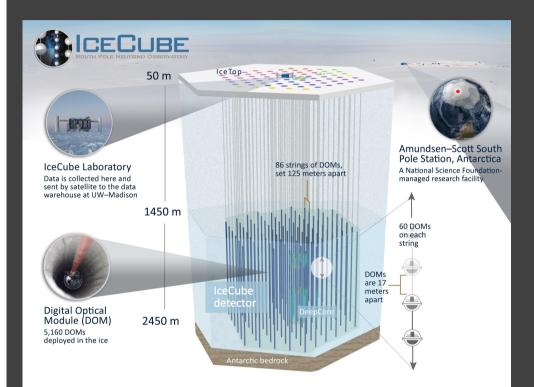
INDIRECT DETECTION OF MM

• A MM acts as a super-charged muon

- $_{\odot}$ the ionization yield of a relativistic unit charge MM is (gD/e)2 \sim 4700 times that of a MIP
- Also 4700 times more Cherenkov light than that of a muon with the same speed

M. Doro - Fundamental Physics with IACTs - CTA School 2024

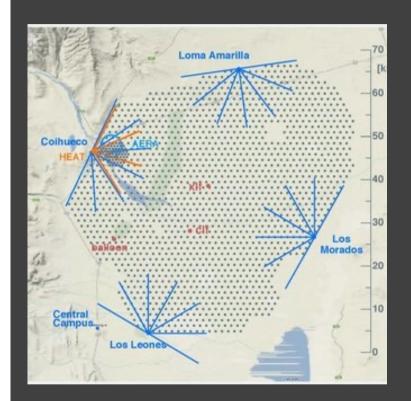
https://pdg.lbl.gov/


	Monopole Flux — Cosmic Ray Searches "Caty" in the charge column indicates a search for monopole-catalyzed nucleon decay.						
FLUX (cm ⁻² sr ⁻¹ s ⁻¹	MASS 1 (GeV)	CHG (g)	$COMMENTS (\beta = v/c)$	DOCUMENT ID	TECN		
<2E-19		1	0.86< <i>β</i> <0.995		22 ICCB		
<2E-14	>5E8		$6E-4 < \beta < 5E-3$		21 NOVA		
<1E-17		Caty	$1E-5 < \beta < 1E-3$	³ GAPONENKO 2	21 BAIK		
< 1.5E - 18		1	$\beta > 0.6$		7 ANTR		
<2.5E-21		1	1E8< γ <1E13	⁵ AAB 1	6 AUGE		

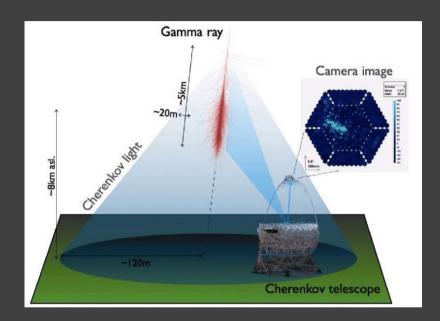
Monopole Density — Astrophysics

DENSITY	CHG (g)	MATERIAL	DOCUMENT ID	TECN
<1.E-9/gram <6.E-33/nucl		sun, catalysis moon wake		COSM ELEC

Monopole Flux — Astrophysics							
FLUX	MASS	CHG	COMMENTS				
$(cm^{-2}sr^{-1}s^{-1})$	(GeV)	(g)	$(\beta = v/c)$	DO	CUMENT ID		TECN
<1.3E-20			faint white dwarf		EESE	99	ASTR
< 1.E - 16	E17	1	galactic field	² AD	AMS	93	COSM
<1.E-23			Jovian planets	1 AR	AFUNE	85	ASTR
< 1.E - 16	E15		solar trapping	BR	ACCI	85B	ASTR


ICECUBE

- Located at the South Pole in Antarctica, the IceCube detector is an array of 5160 optical modules arranged in 86 vertical strings deployed into the ice between 1500 m and 2500 m below the surface, with a total volume of 1 km³.
- A charged particle can emit Cherenkov light in ice
- Core science: astrophysical neutrinos, but can see MMs above beta>0.5
- Several publications assuming supermassive MMs



PIERRE AUGER OBSERVATORY (PAO)

- PAO is the largest (3,000 km2) ultra-highenergy cosmic-ray detector currently in operation.
- Surface-detector array of water tanks that samples the charged particles from atmospheric showers and 24 fluorescence detectors with a field-of-view of 30°.
- PAO is sensitive to ultra-relativistic gamma>10^8 MMs
- Several papers published assuming light enough MMs

IACTS

 Only preliminary studies from MSc thesis of Gerrit Spengler • Very peculiar signature from MM in IACTs:

• Super-bright events

• Double signals (from different zone of the atmosphere)

• No confusion wrt gamma-rays

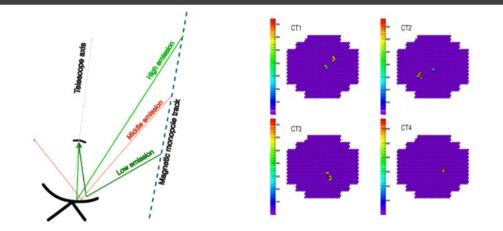
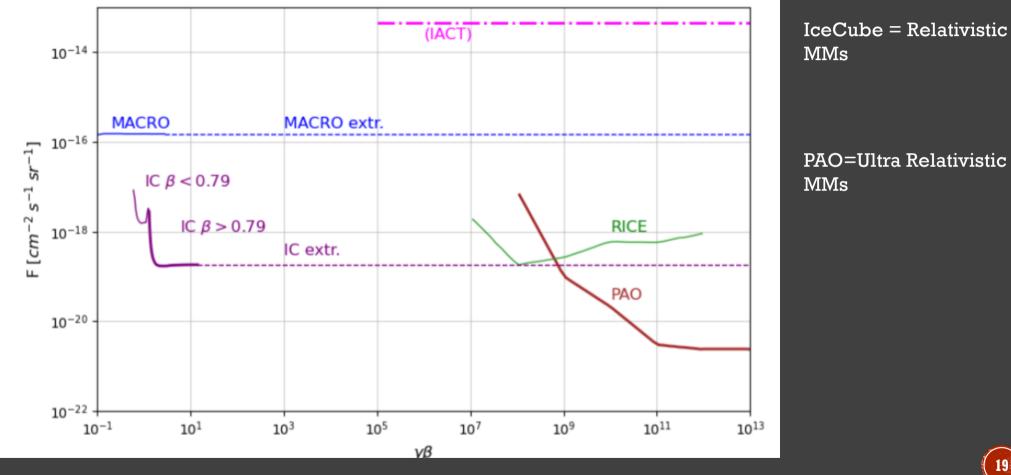



Figure 8.18: Left: Emission scheme from an ultrarelativistic MM emitting Cherenkov radiation throughout the full length of the atmosphere. Right: A simulated MM event on H.E.S.S. cameras. Courtesy of (Spengler, 2009).

M. Doro - Fundamental Physics with IACTs - CTA School 2024

CURRENT WORLD-BEST LIMITS

19

#2 ACCELERATION OF MM IN COSMIC FIELDS

Yes, sorry for taking so long...

M. Doro - Fundamental Physics with IACTs - CTA School 2024

MM AND MAGNETIC FIELDS

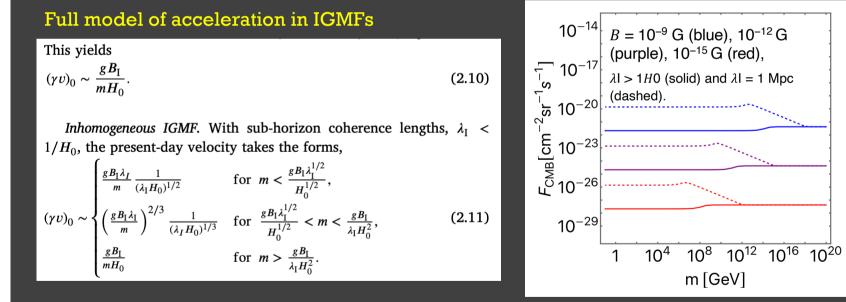
• The evolutions of magnetic monopoles and cosmic magnetic fields are strictly coupled throughout the universe's history.

Cosmic magnetic fields accelerate the monopoles

 $m\frac{d}{dt}(\gamma v) = gB$

Accelerated monopoles extract energy from cosmic magnetic fields

Monopole bounds are affected by the acceleration The survival of cosmic magnetic fields might lead to new bounds If one defines a model for cosmic MFS, one can compute the acceleration of MMs in function of the MM mass (and considering the back-reactions –thus the flux density)



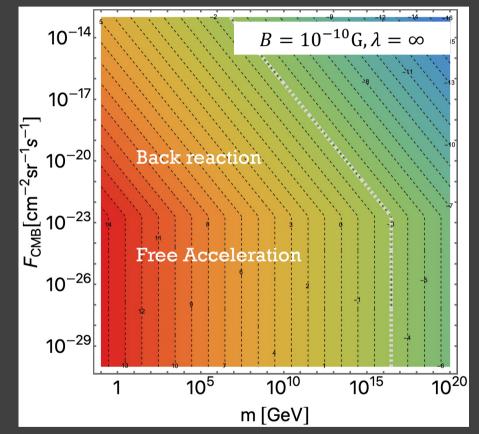
	Physics of the Dark Universe 46 (2024) 101704	
	Contents lists available at ScienceDirect	, Physics of The
\$~2°	Physics of the Dark Universe	darkuniverse
ELSEVIER	journal homepage: www.elsevier.com/locate/dark	

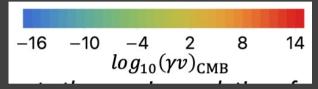
Full length article

Monopole acceleration in intergalactic magnetic fields Daniele Perri^{a,b,c,*}, Kyrilo Bondarenko^{a,b,c}, Michele Doro^{d,e}, Takeshi Kobavashi^{a,b,c,f}

Threshold for back-reaction

Back-reaction: MM extracts energy from B. It depends on flux

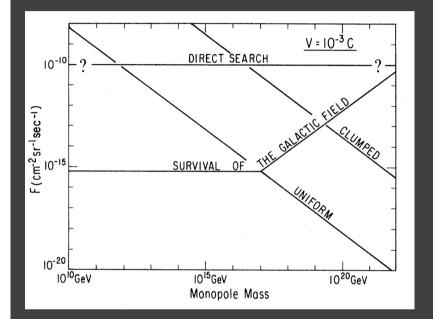

Maximum speed depends on flux:


 $(\gamma v)_{\rm CMB} \sim min\left(\frac{gB}{mH_0}, \frac{B^2}{4\pi mF_{\rm CMB}}\right)$

M. Doro - Fundamental Physics with IACTs - CTA School 2024

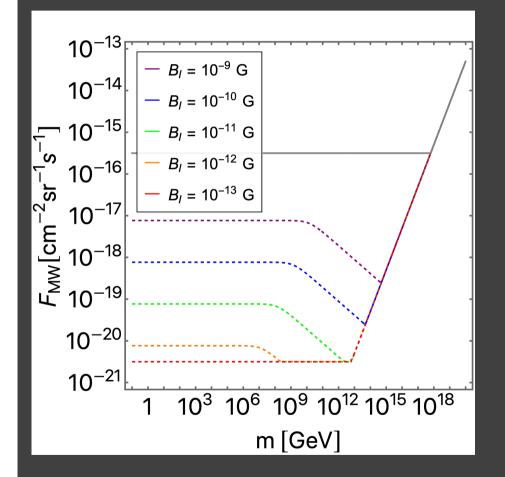
(22)

ACCELERATION IN IGMF



 Depending on the flux, once a model of IGMF is given MM speed can be related to MM mass

 IGMF alone can accelerate MM to ultra-relativistic speeds

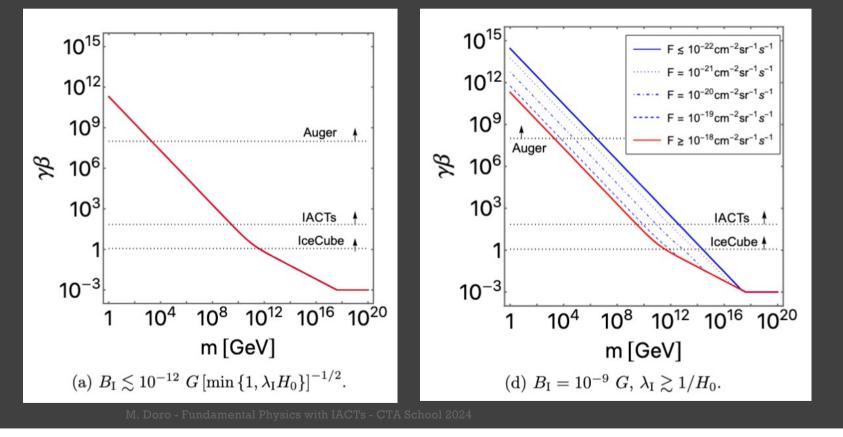

23

GALACTIC MAGNETIC FIELDS

- In 1970 Parker proposed a bound on the monopole flux today inside our Galaxy:
 - The Galaxy presents a magnetic field of~2×10⁽⁻⁶⁾ G;
 - The Galactic magnetic field accelerates the monopoles losing its energy;
 - The survival of the field provides a bound on the monopole flux today.
- The bound can be even extended considering the seed field of the Galaxy.

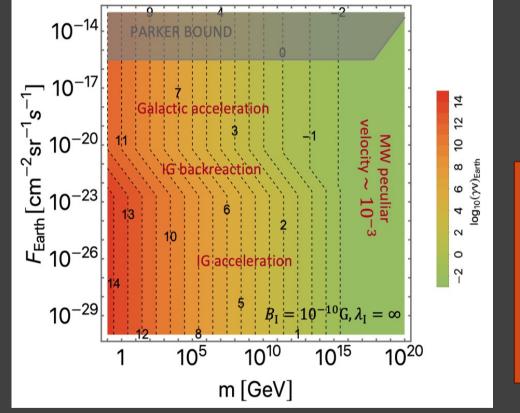
GALACTIC ACCELERATION

• Observations indicate that the Milky Way hosts GMFs with an average amplitude B $\sim 10-6$ G and coherence length $\lambda \sim 1$ kpc, within a magnetic region of size R ~ 10 kpc

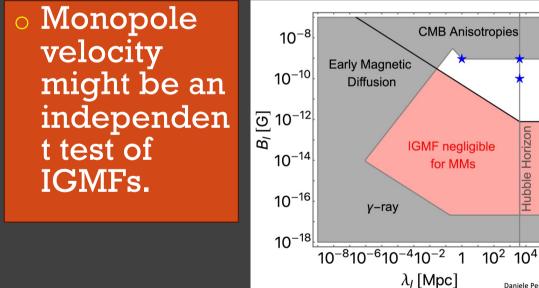

$$m\left(\gamma_{\rm G}-1
ight)\sim gB_{\rm G}\sqrt{R\lambda_{\rm G}}\sim 10^{11}\,{
m GeV}\left(rac{g}{g_{
m D}}
ight)$$

Galactic Parker bounds depend on the monopole incident velocity on the Milky Way (intergalactic acceleration).

25


PAPER IN PREP.

 One can compute the speed-mass relation for different scenarios of IGMF (and flux)


26

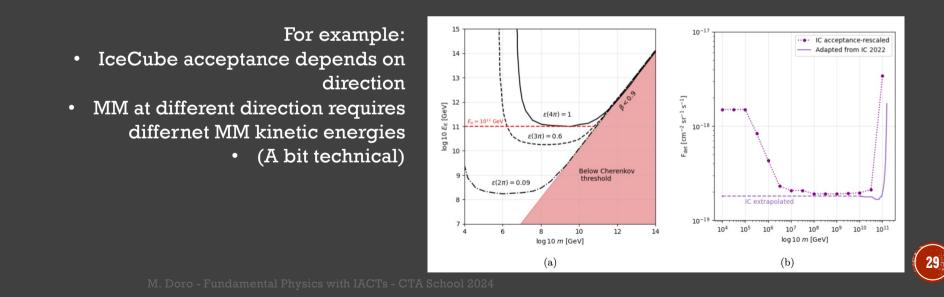
ALL CONSIDERERED

• MM speed at Earth is dominated by maximum accelerator (IGMF, GAL or peculiar velocity)

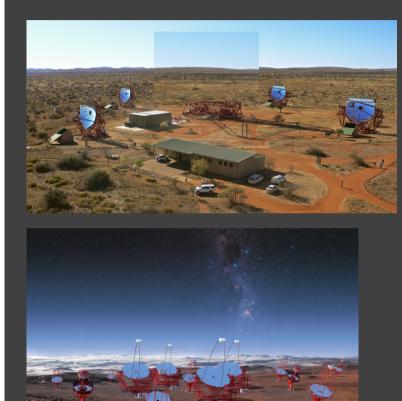
 $v_{\rm E} = \max\{v_{\rm I}, v_{\rm G}, v_{\rm p}\}.$

Hubble Horizon

Daniele Perri. 27

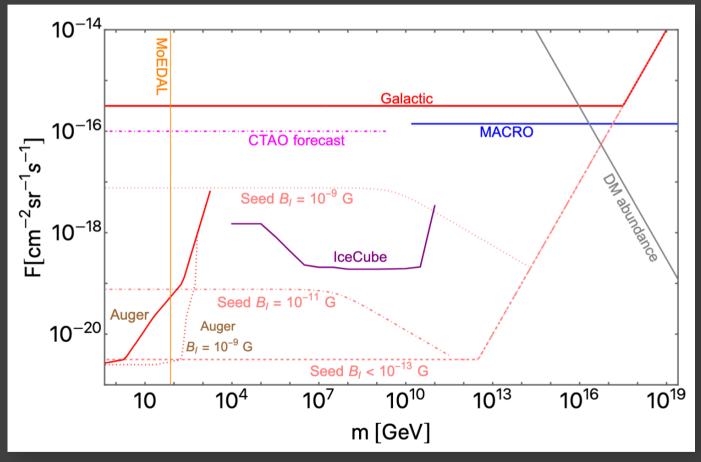


We are almost there



RECASTING OF EXISTING EXPERIMENTAL LIMITS

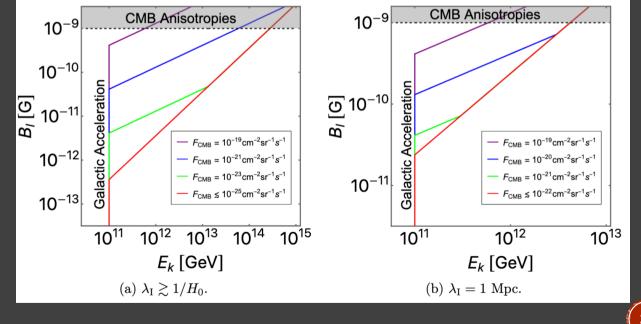
- o MACRO, IceCube, PAO, IACTs set limits in dependence of MM speed
- Our model allows to relate MM speed-mass(-flux)
- We recasted published most constraining experimental limits in function of MM mass.
 - Needed to re-compute kinetic energy at the detector, considering detector acceptance


FOCUS ON IACTS

- Only MSc work from Gerrit Spengler (2009) for H.E.S.S. data
 - Simplified Monte Carlo, strong data selection
- Cherenkov Telescope Array Observatory will improve
 - Larger FOV
 - Larger effective area
 - Longer exposure
- All considered, sensitivity can improve 200 times wrt H.E.S.S. and on wider MM speed range
- A topic so far not investigated by current IACTs

MM FLUX VS MASS LIMITS

Several points:


- Galactic seed limits competitive depending on B
- Auger limits affected by IGMF acceleration
- CTAO forecast may bridge PAO and IceCube

• ...

M. Doro - Fundamental Physics with IACTs - CTA School 2024

CONCLUSIONS

- In a coherent cosmic MFs scenario, MMs can be accelerated to ultra-relatitivistic speed depending on mass and flux.
- IGMF or GMF can dominate according to MM mass and flux
- IGMF flux limits can constrain IGMF

Thanks!