

Tracing Cosmic Magnetism with Gammaray Bursts

Davide Miceli INFN Padova

davide.miceli@pd.infn.it

IFPU 11/02/2025

About me

- Born in Modena, 15 October 1993
- PhD at University of Udine (but living in Trieste ☺)

Multi-wavelength afterglow numerical code and data analysis of MAGIC very high energy emission from gamma-ray bursts (GRBs)

- A little bit travel around for postdocs/positions:
 - Local operator specialist for MAGIC and LST telescopes, living in La Palma, Canary Island
 - Postdoctoral fellowships:
 - LAPP, Annecy, France
 - University of Padova, Italy
 - Non-permanent PNNR position at Istituto Nazionale di Fisica Nucleare (INFN), Padova, CTA+ project

About me

IGMF: when did everything start?

- 2021 University of Padova 'Probing cosmic magnetism with high-energy astrophysics'
 →investigate the capability of Cherenkov telescopes (MAGIC, CTAO) of studying IGMF from GRBs detected at <u>Very High Energy (VHE, E > 100 GeV</u>)
- Exploring a refined approach to assess the impact of intrinsic GRB properties (energetics, geometry, distance) in IGMF studies
- Collaborators: E. Prandini, P. Da Vela, L. Nava, G. Ghirlanda, ..?

Background and expertise:

- Gamma-ray Cherenkov telescopes (MAGIC, LST, CTAO): data analysis; simulations; maintenance activities; follow-up transient sources; currently Coordinator of the MAGIC Transient Working Group
- **Gamma-ray Bursts**: observations in the gamma-ray GeV-TeV domain; theoretical interpretation and modeling of multi-wavelength (radio to gamma-rays) afterglow emission;
- Intergalactic magnetic field studies in gamma-ray domain with GRBs

4

A (non-exaustive) map of topics involved in this talk

Gamma-ray Bursts

- Transients (ms days/weeks)
- Cosmological (z ~ 2) \bullet
- Bright (L_{iso} 10⁴⁹ 10⁵³ erg s⁻¹) igodol

INFN

Gamma-ray Bursts: Prompt phase

Gamma-ray Bursts: afterglow phase

8

Is there emission in the VHE domain (E > 100 GeV) in GRBs? HE emission (< 100 GeV) properties:

- Almost consistent with synchrotron radiation (synchrotron burnoff limit)
- No spectral cut-off identified (shock microphysics uncertainties, non-uniform magnetic fields)

keV

Observations from keV to TeV domain

Credit: ESA

Credit: NASA

Space telescopes

GeV

Credit: NASA

TeV

Ground-based observatories

Credit: LHAASO

Observations of GRBs: TeV domain

Long story short:

- We need to know **where** to look (space telescopes trigger and send alert with position uncertainty of arcmins)
- We need to be **fast** (follow-up starting at order of min or even sec)

Observations of GRBs: TeV domain

• Imaging Atmospheric Cherenkov Telescopes (IACTs) [30-50 GeV – 10s TeV]

- Narrow field of view (FoV) $(3-5^{\circ}) \rightarrow$ need external alert + automatic alert system + fast repointing
- Small duty cycle (10%)
- Low energy threshold: 30-50 GeV
- Better sensitivity than EAS up to a few TeV

• Shower front arrays [100s GeV - >100s TeV]:

- Wide field of view → no repointing needed
- Large duty cycle (100%)
- High energy threshold: 100s GeV TeV → extragalactic background light (EBL) absorption
- Large collection area \rightarrow can reach 100s TeV and above

Imaging Atmospheric Cherenkov Telescopes (IACTs)

H.E.S.S.

2 x 17 m **MAGIC** FoV: 3.5° Follow-up 7°/s (30 s)

Credit: Robert Wagner/MAGIC Collaboration

Credit: VERITAS

4 x 12 m + 1 x 28 m FoV: 3 - 5°

Credit: Klepser, DESY, H.E.S.S. collaboration

Imaging Atmospheric Cherenkov Telescopes (IACTs)

15

Hunting GRBs in the VHE domain: a non-homogeneous story

From Berti & Carosi 2022

- 1989: first detection of VHE source (Crab Nebula) by IACT (Whipple telescope)
 1991-2000 BATSE, EGRET operations
- 1994-95: first follow-ups by IACT (Whipple, 9 GRBs) → delays from T_o ~ 2-56 minutes
 1996: launch of Beppo-Sax
- 1994-00: several EAS searches for TeV/PeV emission from GRBs (including hint of Milagrito on 970417A)
- 2004 launch of Swift -> fundamental for alerts and successfully rapid repointing
- 2004: MAGIC-I, H.E.S.S. phase-I (4x12m) and ARGO-YBJ started operations and GRB follow-up
- 2007: VERITAS started operations and GRB follow-up
- 2007-08 AGILE (07) and Fermi (08) were launched
- 2009: MAGIC-II started operations \rightarrow big sensitivity improvement
- 2012 HESS phase-II: add 28 m telescope \rightarrow transient dedicated telescope

Decades of searches for the VHE emission

Decades of searches for the VHE emission

Cherenkov telescope observations: only upper limits until 2019

GRB 190114C: 1[°] announcement from IACTs

TITLE: GCN CIRCULAR NUMBER: 23701 SUBJECT: MAGIC detects the GRB 190114C in the TeV energy domain DATE: 19/01/15 01:56:36 GMT FROM: Razmik Mirzoyan at MPI/MAGIC <Razmik.Mirzoyan@mpp.mpg.de>

R. Mirzoyan (MPP Munich), K. Noda (ICRR University of Tokyo),

E. Moretti (IFAE Barcelona), A. Berti (University and INFN Torino),

C. Nigro (DESY Zeuthen), J. Hoang (UCM Madrid), S. Micanovic

(University of Rijeka), M. Takahashi (ICRR University of Tokyo),

Y. Chai (MPP Munich), A. Moralejo (IFAE Barcelona) and the MAGIC Collaboration report:

On January 14, 2019, the MAGIC telescopes located at the Observatorio Roque de los Muchachos on the Canary island of La Palma, detected very-high-energy gamma-ray emission from GRB 190114C (Gropp et al.,

GRBs at VHE: the current status

5 GRBs detected at > 5σ (afterglow phase)

	T ₉₀ s	$E_{\gamma,iso} \ {f erg}$	Z	T _{delay} s	E _{range} TeV	IACT (sign.)
160821B	0.48	$1.2 imes 10^{49}$	0.162	24	0.5-5	MAGIC (3.1σ)
180720B	48.9	$6.0 imes10^{53}$	0.654	3.64×10^{4}	0.1-0.44	H.E.S.S. (5.3 σ)
190114C	362	$2.5 imes10^{53}$	0.424	57	0.3-1	MAGIC (> 50σ)
190829A	58.2	$2.0 imes10^{50}$	0.079	1.55×10^{4}	0.18-3.3	H.E.S.S. (21.7 σ)
201015A	9.78	$1.1 imes 10^{50}$	0.42	33	0.14	MAGIC (3.5 σ)
201216C	48	$4.7 imes 10^{53}$	1.1	56	0.1	MAGIC (6.0 σ)
221009A	289	1.0 x 10 ⁵⁵	0.151	0-3000	0.3-13	LHAASO (250σ)

Adapted from DM & Nava, 2022

GRBs at VHE: the current status

2 GRBs detected at $\sim 3\sigma$ (afterglow phase)

	T ₉₀	$E_{\gamma,iso}$	Z	T _{delay}	Erange	IACT (sign.)
	S	erg		S	TeV	
160821B	0.48	$1.2 imes 10^{49}$	0.162	24	0.5-5	MAGIC (3.1 σ)
180720B	48.9	$6.0 imes10^{53}$	0.654	3.64×10^{4}	0.1-0.44	H.E.S.S. (5.3 σ)
190114C	362	$2.5 imes 10^{53}$	0.424	57	0.3-1	MAGIC (> 50σ)
190829A	58.2	$2.0 imes10^{50}$	0.079	1.55×10^{4}	0.18-3.3	H.E.S.S. (21.7 σ)
201015A	9.78	$1.1 imes10^{50}$	0.42	33	0.14	MAGIC (3.5 σ)
201216C	48	$4.7 imes 10^{53}$	1.1	56	0.1	MAGIC (6.0 σ)
221009A	289	1.0 x 10 ⁵⁵	0.151	0-3000	0.3-13	LHAASO (250σ)

Adapted from DM & Nava, 2022

Population of GRBs in VHE domain

- Broadband intrinsic properties:
 - span more than 3 orders of magnitude in $E_{y,iso}$
 - Span 2 orders of magnitude in terms of L_{VHE}
 - ranging in redshift between 0.079–1.1
- X-ray TeV connection:
 - similar fluxes and decay slopes
 - similar amount of radiated power(L_{VHE} 15-60% L_{X-ray})
- Data modeling:
 - SSC suggested (not conclusive)
 - no preferences on constant/wind-like medium
 - $\epsilon_{e} \sim 0.1, \epsilon_{B} \sim 10^{-5} 10^{-3}, \xi < 1$

VHE responsible radiation mechanism in GRBs

Population of GRBs in VHE domain: the role of redshift

adapted from Nava, 2021

Open question for VHE in GRBs

- Is TeV emission a <u>universal component</u> in GRBs?
- Is SSC the responsible radiation mechanism or is there an interplay among radiation mechanisms? (synchrotron radiation, SSC, photo-hadronic interactions)
- How does the VHE spectrum evolve with time?
- Prompt VHE emission?
- Several open field in GRB physics: shock microphysics, environmental conditions at the burst site, acceleration process efficiency, orientation-dependency and connection with GW

X_{EBI}

e⁺

IGMF

How GRBs impact on IGMF studies?

Razzaque et al. (2004) Ichiki et al. (2008) Takahashi et al. (2008) Murase et al. (2009)

An <u>extended</u> and <u>time-delayed</u> component due to IGMF deflection + CMB reprocessing

TeV 'primary' gamma-rays GeV 'secondary' gamma-rays

X_{CMB}

How GRBs impact on IGMF studies?

Intrinsic source properties

Gamma-ray propagation (EBL, pair scatter, IC) and magnetic field models

Instrument sensitivity

GRB intrinsic source spectrum (spectral and temporal evolution) → input for gamma-ray propagation

How can gamma-ray probe IGMF properties (B strength and correlation length $\lambda_{\rm B}$)?

Extended emission

Time-delayed "pair-echo" emission

SED signatures

Search for the time-delayed 'pair-echo' cascade emission

The advantage of using GRBs for IGMF studies?

- GRBs timescales of emission (hours, days in gamma-ray domain) –> reduced pollution from primary source
- GRB duty cycle → relaxed assumption
- GRB intrinsic brightness and cosmological nature \rightarrow increase redshift horizon
- GRBs discovered at TeV energies \rightarrow IACTs can play a role (GRB intrinsic spectrum + pair-echo)

An independent verification of IGMF studies with AGNs

An opportunity to explore pair-echo signal without source contamination at different energy ranges

GRB190114C (z = 0.42)

Spectral energy distribution

- Primary GRB emission
- Secondary emission
- Observational time: 3 hours starting from 2400 s after trigger burst
- MAGIC and CTAO sensitivity derived and rescaled in time $(S \propto (1/\sqrt{t}))$

GRB190114C (z = 0.42)

Scaled GRB190114C (z = 0.2)

GRB221009A (z = 0.151)

- Extend observations for at least 3 hours after GRB detection
- GRBs observations can probe IGMF strengths in the 10⁻¹⁷ – 10⁻¹⁹ G → competitive with most stringent AGN results

GRB221009A(z = 0.151)

Scaled GRB221009A (z = 1.0)

DM, Da Vela, Prandini, 2024

Pair-echo emission + GRB afterglow

- Afterglow emission can vary of several order of magnitudes
- X-ray afterglow displays unclear features (pleateaus, flares, steep decay, jet breaks)
- How GRB intrinsic properties impact IGMF studies? (is it true that brightest and nearby GRBs are best choices?)

Pair-echo emission + GRB afterglow convolution

Extrapolate GRB properties (spectrum and time evolution) from a simulated GRB

Pair-echo emission + GRB afterglow convolution

We estimated the pair-echo LCs from a simulated GRB

Pair-echo emission + GRB afterglow convolution

- Assuming a smaller redshift (z=0.15) with same GRB properties
- Add a "jet break" at 10⁴ s (light curve steeping of a factor ∝ t⁻¹)

Pair-echo emission + GRB afterglow convolution

• Pair-echo emission becomes competitive with GRB afterglow at late times for $B > 10^{-19} G$

Currently exploring the impact of GRB properties (energies, distance, geometry) on a sample of simulated GRBs

Next generation: Cherenkov Telescope Array Observatory (CTAO)CTAO North (Alpha configuration)4 LSTs (23 m)9 MSTs (12 m)

CTAO South (Alpha configuration + CTA+) 2 LSTs 14 MSTs 37+5 SSTs

40

Next generation: Cherenkov Telescope Array Observatory (CTAO)

CTAO North status May 2024

Next generation: Cherenkov Telescope Array Observatory (CTAO)

CTAO North status May 2024 → commissioning in 2025/2026

Next generation: Cherenkov Telescope Array Observatory (CTAO)

CTAO upgrades:

- a lower energy threshold (<30 GeV)
- a larger effective area at multi-GeV energies (~ 10⁴ times larger than Fermi-LAT at 30 GeV)
- a rapid slewing capability (180 degrees azimuthal rotation in 20 s).
- a full sky coverage
- a broader energy range: 20 GeV- 300 TeV

https://www.cta-observatory.org/science/ctao-performance/

CTAO for GRBs: an upcoming revolution

CTAO revolution:

- x10 sensitivity to gamma-ray signal
- x10⁴ sensitivity to short-term (< 10⁴ s) emission below 250 GeV with respect to Fermi-LAT
- Intermediate arrays at both sites operative by 2027; full array by 2031-2032
- GRB detection rates (Inoue et al. 2013): > 1-4 GRBs/year/site (but to be updated with new VHE GRB discovery!)

https://www.cta-observatory.org/science/ctao-performance/ 44

Conclusions (+ future prospects)

- Discoveries in the past 5 years have open a new observational window for GRBs: the TeV domain
- Results have shown that (to some extent) VHE emission is compatible with broadband intrinsic properties of GRBs (energetics, luminosity, distance) and broad observational requirements (timing, VHE range) → universality of TeV component?
- So far modeling reproduced the VHE component in the context of the SSC emission from external forward shock scenario, but still not conclusive results (Synchrotron, EIC, p-synchrotron)
- GRBs can provide new independent and complementary verification of IGMF studies in gamma-ray domain, circumventing limitations and assumptions of AGN studies
- Impact of GRBs intrinsic source features still unclear (distance, brightness, intrinsic spectrum shape and features, time evolution, jet break) → currently under study!
- Current and future generation instruments (CTAO, SWGO) are ready in the game, improvements are under investigation, 15 years of continuous improvements lead to first GRB VHE detections

BACKUP SLIDES

Shower front arrays

Wide-Field-of-View Ground-Based γ-Ray Observatories

Next generation: the Southern Wide-field Gamma-ray Observatory (SWGO)

Gamma-ray bursts with SWGO

Search for the time-delayed 'pair-echo' cascade emission

$$E_{rep} \sim 0.32 \left(\frac{E_{\gamma}}{20 \ TeV}\right)^2 \text{TeV}$$

$$F_{delay} \sim F_0 \frac{T}{T_{delay} + T}$$

 $T_{delay} \propto B^2 E_{\gamma}^{-5/2}$ $T_{delay} \propto B^2 E_{\gamma}^{-2} \lambda_B$

$$\lambda_B >> \lambda_{IC}$$

 $\lambda_B << \lambda_{IC}$

Neronov et al. 2009 Batista et al. 2021

- 100s GeV photons experience shorter delays (~ hrs/days) than GeV photons (~ weeks/yrs)
- Weak B field (10⁻¹⁷ 10⁻²¹ G) are compatible short delays
- Stronger B are compatible with longer delays (and a more diluted cascade)

10-18 0

Search for the time-delayed 'pair-echo' cascade emission

$$E_{rep} \sim 0.32 \left(\frac{E_{\gamma}}{20 \text{ TeV}}\right)^2 \text{TeV}$$

$$F_{delay} \sim F_0 \frac{T}{T_{delay} + T}$$

$$T_{delay} \propto B^2 E_{\gamma}^{-5/2} \lambda_B >> \lambda_{lC}$$

$$T_{delay} \propto B^2 E_{\gamma}^{-2} \lambda_B \quad \lambda_B << \lambda_{lC}$$
Neronov et al. 2009
Batista et al. 2021

Search for the time-delayed 'pair-echo' cascade emission

$$E_{rep} \sim 0.32 \left(\frac{E_{\gamma}}{20 \ TeV}\right)^2 \text{TeV}$$

$$F_{delay} \sim F_0 \frac{T}{T_{delay} + T}$$

$$T_{delay} \propto B^2 E_{\gamma}^{-5/2}$$

 $T_{delay} \propto B^2 E_{\gamma}^{-2} \lambda_B$

Neronov et al. 2009 Batista et al. 2021

GRB 190114C -- Timeline

- E_{γ,iso} ~ 2.5 x 10⁵³ erg
- z = 0.42

MAGIC detection info:

- T_{delay} ~ 57 s
- > 50σ in 20 minutes
- detection up to 40 min
- 0.3 1 TeV energy range
- moon conditions and Zd>50

GRB 190114C – Light curve

VHE light curve:

- No evidences for breaks, cutoffs or irregular variability → afterglow emission
- Similar decay and radiated power in soft X-ray – GeV and TeV domain

GRB 190114C – VHE SED

GRB 190114C -- interpretation

GRB 190114C -- interpretation

GRB 190114C -- modeling

Synchrotron + Synchrotron Self-Compton (SSC) from external forward shock

- Observed No **γ**-**γ** opacity EBL-deabsorbed
- MAGIC soft spectrum:
 - Klein-Nishina
 - y-y internal absorption

GRB afterglow parameters: $E_k \gtrsim 3 \times 10^{53} \text{ erg}$ $\epsilon_e \sim 0.05 - 0.15$ $\epsilon_b \sim 0.05 - 1 \times 10^{-3}$ $n \sim 0.5-5 \text{ cm}^{-3}$ $p \sim 2.4 - 2.6$

GRB 190829A

- $E_{\gamma,iso} \sim 2.0 \times 10^{50} \, erg$
- z = 0.079

H.E.S.S. detection info:

- T_{obs} ~ 4.3 55.9 hrs
- 21.7σ, 5.5σ, 2.4σ,
- 0.18 3.3 TeV energy range

GRB 190829A

GRB 201216C

E_{γ,iso} ~ 4.7 x 10⁵³ erg
z = 1.1

MAGIC detection info:

- Tdelay ~ 56 s
- 6σ in 20 minutes
- 0.07 0.2 TeV energy range

62

GRB 201216C

Parameter	Range	Best fit value
$E_{\rm k}$ [erg]	$10^{50} - 10^{54}$	4×10^{53}
θ_{jet} [degrees]	0.5 - 3	1
Γ_0	80-300	180
$n_0 [\mathrm{cm}^{-3}] (s=0)$	$10^{-2} - 10^2$	-
$A_{\star} (s=2)$	$10^{-2} - 10^2$	2.5×10^{-2}
р	2.05 - 2.6	2.1
$\epsilon_{ m e}$	0.01-0.9	0.08
$\epsilon_{ m B}$	$10^{-7} - 10^{-1}$	2.5×10^{-3}

Strong indication in favour of a wind-like medium

63

GRB 221009A

- E_{y,iso} 1 x 10⁵⁵ erg
- z = 0.15

LHAASO detection info:

- > 250σ in 230 3000 s
- 0.3 13 TeV energy range

GRB 221009A

LHAASO Coll. et al., 2023

64

GRB 180720B

- Long GRB
- E_{y,iso} ~ 6.0 x 10⁵³ erg
- z = 0.654

H.E.S.S. detection info:

- Tdelay ~ 10 hrs
- > 5.3σ in 2 hrs
- 0.1 0.44 TeV energy range

HESS Coll., 2019

GRB 160821B

- short GRB
- $E_{\gamma,iso} \sim 1.2 \times 10^{49} \, erg$
- z = 0.162

MAGIC info:

- Tdelay ~ 24 s
- 3σ in 4 hrs
- 0.5 5 TeV energy range
- moon conditions, dedicated analysis

GRB 190114C

Time bin	Energy flux	Spectral index		
[seconds after T_0]	[erg cm ⁻² s ⁻¹]			
62 - 100	$[5.64\pm0.90({ m stat}){}^{+3.24}_{-3.22}({ m sys})]\cdot10^{-8}$	-1.86 ^{+0.36} _{-0.40} (stat) ^{+0.12} _{-0.21} (sys)		
100 - 140	$[3.31\pm0.67(stat)^{+2.71}_{-1.84}(sys)]\cdot10^{-8}$	-2.15 ^{+0.43} _{-0.48} (stat) ^{+0.25} _{-0.32} (sys)		
140 - 210	$[1.89\pm0.36(\text{stat}){}^{+1.72}_{-0.94}(\text{sys})]\cdot10^{-8}$	-2.31 ^{+0.47} _{-0.54} (stat) ^{+0.15} _{-0.22} (sys)		
210 - 361.5	$[7.54\pm1.60(\text{stat}){}^{+6.46}_{-4.41}(\text{sys})]\cdot10^{-9}$	-2.53 ^{+0.53} _{-0.62} (stat) ^{+0.22} _{-0.24} (sys)		
361.5 - 800	$[3.10\pm0.70(stat){}^{+1.20}_{-2.36}(sys)]\cdot10^{-9}$	-2.41 ^{+0.51} _{-0.65} (stat) ^{+0.27} _{-0.34} (sys)		
800 - 2454	$[4.54\pm2.04(\text{stat}){}^{+7.66}_{-1.96}(\text{sys})]\cdot10^{-10}$	-3.10 ^{+0.87} _{-1.25} (stat) ^{+0.75} _{-0.24} (sys)		
62 - 2454 (time integrated)	-	-2.22 ^{+0.23} _{-0.25} (stat) ^{+0.21} _{-0.26} (sys)		

GRB 190114C

Time bin	D11	F08	FI10	G12
[seconds after T_0]				
62 — 100	-1.86 ^{+0.36}	-2.04+0.36	-1.81 ^{+0.36}	-1.95 ^{+0.36}
100 - 140	-2.15 ^{+0.43}	$-2.32^{+0.43}_{-0.48}$	$-2.09^{+0.43}_{-0.48}$	-2.23 ^{+0.42}
140 - 210	-2.31 ^{+0.47} _{-0.54}	-2.48 ^{+0.47}	-2.25 ^{+0.47}	-2.39 ^{+0.47}
210 - 361.5	$-2.53^{+0.53}_{-0.62}$	-2.69 ^{+0.52}	-2.46 ^{+0.52}	-2.60 ^{+0.52}
361.5 - 800	-2.41 ^{+0.51}	-2.58 ^{+0.51}	-2.34+0.51	-2.49 ^{+0.51}
800 - 2454	-3.10 ^{+0.87}	-3.20 ^{+0.83}	-2.96 ^{+0.83}	-3.08+0.82
62 – 2454 (time integrated)	-2.22 ^{+0.23}	-2.39 ^{+0.23}	-2.15 ^{+0.23}	-2.29+0.23

GRB 190114C

Event	redshift	T_{delay} (s)	Zenith angle (deg)		
GRB 061217	0.83	786.0	59.9		
GRB 100816A	0.80	1439.0	26.0		
GRB 160821B	0.16	24.0	34.0		
GRB 190114C	0.42	58.0	55.8		

Population of GRBs at VHE: what we thought vs what we discovered

"Mandatory" requirements:

- low zenith angles (energy threshold below ~ 100 GeV)
- dark nights
- small delays from T_o
- low z
- highly energetic events

GRB190114C: zenith >55°, Moon conditions GRB160821B: Moon conditions GRB180720B, GRB190829A: $T_{delay} \sim hrs/days$ GRB201216C: z = 1.1 GRB190829A, GRB201015A, GRB160821B: $E_{y,iso} \sim 10^{49} - 10^{50}$ erg

Population of GRBs in VHE domain

- Broadband intrinsic properties:
 - span more than 3 orders of magnitude in $E_{v,iso}$
 - Span 2 orders of magnitude in terms of L_{VHE}
 - ranging in redshift between 0.079–1.1

Open question: degeneracy of afterglow parameters

	E _k erg	e,		¢y	n cm ⁻³	p	5	e	θ_j rad	
Hess Coll. (S Hess Coll. (S Salafia + 202	SC) 2.0×10^5 sync) 2.0×10^5 $1 1.2-4.4 \times 1$	0 0.9 0 0.03-4 0 ⁵³ 0.01-4	1 5.9-7.2 0.08 s 0.06 1.2-6.0	7×10^{-2} ≈ 1 0×10^{-5}	1. 1. 0.12-0.58	2.06-2.1 2.1 8 2.01	5 1 1 <6.5 ×	10 ⁻²	/ / 0.25–0	.29
Zhang + 202	1 9.8 × 10 ⁵	0.3	9 8.7 >	< 10 ⁻⁵	0.09	2.1	0.3	34	0.1	
		E _k erg	ee	¢в		n cm ⁻³	p	ζe		
	MAGIC Coll. Wang + 2019	$\gtrsim 3 \times 10^{53}$ 6×10^{53}	0.05-0.15 0.07	0.05–1 × 4 × 10	10 ⁻³ -5	0.5–5 0.3	2.4–2.6 2.5	1		
	Asano + 2020 Asano + 2020	10 ⁵⁴ 10 ⁵⁴	0.06	9 × 10 1.2 × 10	-4 3	1 0.1 (wind)	2.3 2.35	0.3 0.3		
	Joshi + 2021 Derishev + 2021	4×10^{54} 3×10^{53}	0.03 0.1	0.012 2-6 ×10	-3 2	× 10 ⁻² (wind 2	d) 2.2 2.5	1 1	_	
		E _k erg	$log(e_e)$	$log(e_B)$		log(n) cm ⁻³	р	ζ,	θ _j rad	
M. Tri Zh	AGIC Coll. oja + 2019 nang + 2021 (SSC)	$10^{51}-10^{52}$ $10^{50}-10^{51}$ [3×10^{51}	[-1; -0.1] [-0.39; -0.05] -0.52	[-5.5; -0.8] [-3.1; -1.1] -5	[] [-4.] [-4	85; -0.24] 4.2; -1.7] -1.3	2.2-2.35 2.26-2.39 2.3	1 1 0.5	/ 0.08-0.50 0.15	
Zł	nang + 2021 (EIC)	2×10^{51}	-0.3	-6		-1	2.5	0.1	0.1	

A future challenge for VHE: X-ray Flares

Wang et al. 2006 He et al. 2012 Wang et al. 2013

Signatures of X-ray flares can be found in the GeV-TeV domain?

Population of GRBs in VHE domain: the role of redshift

Dominguez et al., 2011 (similar for other EBL models)

 $z \lesssim 0.1 - 0.2$

- F_{att} relevant above 300 GeV
- F_{att}~ 90% at 1 TeV

z = 0.4

- F_{att}~ 50% at 0.2 TeV
- F_{att}~ 99.5% at 1 TeV

z = 1.1 • F_{att}~ 95% at 0.2 TeV

Theoretical expectations from GRBs in the VHE domain

Synchrotron self-Compton (SSC) emission has been predicted for GRB afterglows: nature candidate for VHE domain (Meszaros et al. 1994; Zhang et al. 2001; Sari et al. 2001; Meszaros et al. 2004;

Fan et al. 2008; Galli et al. 2008; Nakar et al. 2009; Xue et al. 2009; Piran et al. 2010)

Afterglow modeling: external forward shock scenario

Decelerating blastwave interacting with the circumburst external medium

Relativistic shock acceleration

p, ξ, ε_e, ε_B, ε_p

n(R) ∝ R^{-s} External circumburst medium⁶

Afterglow modeling: external forward shock scenario

Jet dynamics

78

Afterglow modeling: external forward shock scenario

Relativistic shocks in GRB afterglow

See Sari et al. 1998, Panaitescu et al. 2000 Granot et al. 2002

Afterglow modeling: external forward shock scenario

Intergalactic Magnetic field (IGMF) studies

IGMF studies investigate a 2D parameter space: Correlation Length (λ_B) – IGMF Strength (B)

Results on IGMF are typically given considering two regimes:

• Long correlation length $(\lambda_B >> \lambda_{IC})$ (motion in homogeneous B, ballistic e^{\pm})

• Short correlation length $(\lambda_B << \lambda_{IC})$ (diffusion in angle, diffusive e^{\pm})

Pair-echo emission + GRB afterglow convolution

$$F_c(E,t) = \int_0^\infty \int_E^\infty G(E_0, E, t - \tau, \tau) F_s(E_0, t - \tau) dE_0 d\tau$$

Cascade Flux

Kernel describing the distribution in energy and time of the cascade signal

"Variability pattern" (Source intrinsic properties and time evolution)

Gamma-rays for IGMF studies: Methods

How gamma-ray can probe IGMF properties (B strength and correlation length λ_B)?

Method I : search for extended emission

- A "<u>smoking gun</u>" for IGMF discovery
- Size and shape depend on IGMF strength and source parameters (jet opening and orientation)

$$\begin{split} & \Theta_{\text{ext}} \propto \mathsf{B} \, \mathsf{E}_{\gamma}^{-1} & \lambda_{\mathsf{B}} >> \lambda_{\mathsf{IC}} \\ & \Theta_{\text{ext}} \propto \mathsf{B} \, \mathsf{E}_{\gamma}^{-3/4} \, \lambda_{\mathsf{B}}^{1/2} & \lambda_{\mathsf{B}} << \lambda_{\mathsf{IC}} \end{split}$$

83