What do we know about the propagation of astroparticles in the intergalactic medium?

2025.02.10, IFPU Focus Week: IGMF

Jonathan Biteau

Extragalactic astroparticles

My main research interests

Intro

astroparticles & cosmic backgrounds

The physics of propagation

radiative and catastrophic losses deflections, delays and spreads

Inferences from observations

TeV gamma rays EeV nuclei

Outro

summary & open questions

Broad-band spectra of the sources

Broad-band spectra of the sources

Synthesis models of all galaxies

Their accumulated contributions today

Intro

astroparticles & cosmic backgrounds

The physics of propagation

radiative and catastrophic losses deflections, delays and spreads

Inferences from observations *TeV gamma rays EeV nuclei*

Outro summary & open questions

$$\begin{aligned} \overline{\frac{\partial n_l}{\partial t}} &= \sum_{j=1}^3 \frac{\partial}{\partial x^j} \left[\left(D_{jk} \cdot \frac{\partial}{\partial x^k} \right) n_l \right] - \sum_{j=1}^3 \frac{\partial}{\partial x^j} \left[u^j \cdot n_l \right] + \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{n_l}{p^2} \right) \right] \\ &- \frac{\partial}{\partial p} \left[\dot{p} n_l - \frac{p}{3} \left(\nabla \cdot \vec{u} \right) n_l \right] + \sum_{j>l} \frac{v_l}{c} n_0 \int dp' \,\sigma_{j \to l}(p, p') \,n_j(p') \\ &- \frac{n_l}{\tau} + Q_l(p) \,. \end{aligned}$$

The diffusion-loss equation (Fokker-Planck)

Starting from the Vlasov equation (e.g. review by Becker-Tjus & Merten '20)

- □ Test particle approach
- □ Stationary magnetic field
- □ Isotropy in momentum phase space
- $n \equiv$ differential number density in phase space

$$\begin{aligned} \frac{\partial n_l}{\partial t} &= \sum_{j=1}^3 \frac{\partial}{\partial x^j} \left[\left(D_{jk} \cdot \frac{\partial}{\partial x^k} \right) n_l \right] - \sum_{j=1}^3 \frac{\partial}{\partial x^j} \left[u^j \cdot n_l \right] + \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{n_l}{p^2} \right) \right] \\ &- \frac{\partial}{\partial p} \left[\dot{p} n_l - \frac{p}{3} \left(\nabla \cdot \vec{u} \right) n_l \right] + \sum_{j>l} \frac{v_l}{c} n_0 \int dp' \sigma_{j \to l}(p, p') n_j(p') \\ &- \frac{n_l}{\tau} + Q_l(p) \,. \end{aligned}$$

Gamma-ray catastrophic losses: pair production on COB/CIB

Optical depth
$$au(E,z) = \int_0^z dz' \frac{\partial L}{\partial z'} \Gamma_{\gamma\gamma}^{-1}(E(1+z'),z')$$

Light travel distance (<u>ACDM</u>)

$$\frac{\partial L}{\partial z} = \frac{c}{H_0} \frac{1}{1+z} \frac{1}{\sqrt{\Omega_\Lambda + \Omega_m (1+z)^3}}$$

Mean free path (photon density, Breit-Wheeler cross section)

$$\Gamma_{\gamma\gamma}^{-1}(E',z) = \int_0^{+\infty} \mathrm{d}\epsilon \,\frac{\partial n}{\partial \epsilon} \int_{-1}^1 \mathrm{d}\mu \,\frac{1-\mu}{2} \sigma_{\gamma\gamma} \Big[E',\epsilon,\mu\Big]$$

where $\mu = 1 - \cos\theta'$

$$ightarrow \Gamma_{\gamma\gamma}(1\,{
m TeV},z=0.2)pprox 250\,{
m Mpc}$$

Cross-section — integrated over the line of sight Relevant threshold for gamma-rays: <u>*E* ~ 100 GeV</u> $\leftrightarrow \epsilon \sim$ 10 eV (UV bckgd)

Radiative losses of e⁺ e[−]: inverse Compton on CMB

1 GeV Generation 1: TeV gamma-ray $\Gamma_{\gamma\gamma}(1\,{
m TeV},z=0.2)pprox 250\,{
m Mpc}$

Generation 2: pair e⁺ e⁻

- Diffuse in $\langle B^2
 angle$ $r_{
 m L}(\gamma_e = 10^6) pprox 0.5 \, {
 m Mpc} (B_{IGM}/10^{-15}\,{
 m G})^{-1}$
- Excite electrostatic instability of beam (~ 10⁻²² cm⁻³) / intergalactic plasma (~ 10⁻⁷ cm⁻³)
 - → Inefficient E-loss mechanism due to
 - background MeV e⁻ (Yang+ ApJ '24)
 - non-linear feedback (Alawashra & Pohl *ApJ* '24)
 - $B > 10^{-17} \text{ G} (\lambda_{B}/1 \text{ pc})^{-\frac{1}{2}}$ (Alawashra & Pohl ApJ '22)
- Inverse Compton on CMB photons $\Gamma_{e\gamma}(\gamma_e=10^6)pprox 0.75\,{
 m Mpc}$

Generation 3: GeV gamma-ray \rightarrow stop $E_1 = \frac{4}{3} \gamma_e^2 \epsilon_{\mathrm{CMB}} \approx 1 \,\mathrm{GeV} \left(\frac{E_0}{1 \,\mathrm{TeV}} \right)^2$ em cascade

4th generation if $E_0 \sim 10$ TeV (plausible)

5th generation if $E_0 \sim 100 \text{ TeV}$ \rightarrow unobserved & Klein-Nishina suppressed

Continuous losses of protons: p-y on the CMB

$$egin{aligned} p+\gamma &
ightarrow p+e^++e^- \ &
ightarrow p+\pi^0 \ &
ightarrow n+\pi^+ \end{aligned}$$

Threshold for π photoproduction $2m_p m_π / 4ε \sim 50 \text{ EeV} x (λ / 1 \text{ mm})$ *Note:* p @ 50 EeV → unobservedCenter of mass (50 EeV x 1 meV)^½ ~ 0.2 GeV

Neutron = proton in the IGM γ ct ~ 10 kpc x (*E* / 1 EeV)

Catastrophic losses of nuclei: photo-erosion/disintegration

$${}^A_Z X + \gamma \rightarrow^{A-a-b}_{Z-b} Y + an + bp$$

Photo-erosion driven by

□ ϵ_{γ} ~ 10 MeV: giant dipole resonance $\rightarrow \lambda_{\gamma} \sim 0.5 \text{ mm} (CMB) \text{ for } E_{\chi}/A \sim 2 \text{ EeV}$ □ ϵ_{γ} ~ 30 MeV: quasi-deuteron process □ ϵ_{γ} > 150 MeV: baryon resonance $\rightarrow \lambda_{\gamma} \sim 30 \ \mu\text{m} (CIB) \text{ for } E_{\chi}/A \sim 2 \text{ EeV}$

Lower energy nuclei and protons \rightarrow with Lorentz boost nearly conserved

Intro

astroparticles & cosmic backgrounds

The physics of propagation

radiative and catastrophic losses <u>deflections</u>, <u>delays and spreads</u>

Inferences from observations TeV gamma rays EeV nuclei

Outro *summary & open questions*

Cosmic web: relevant scales

200 Mpc

Cosmic web: volume filling fraction

Credit: Hackstein+ MNRAS '18 (Cosmic V-web constrained sim. / CLUES)

200 Mpc

Cosmic web: magnetic fields

Credit: Hackstein+ MNRAS '18 (Cosmic V-web constrained sim. / CLUES)

Cosmic web: magnetic fields

Credit: Hackstein+ MNRAS '18 (Cosmic V-web constrained sim. / CLUES)

Cosmic-ray propagation in a turbulent magnetic field

Voids: *B* < 10 pG

→ Too low to have a sizeable impact within cosmic-ray horizon (see Pierre Auger Collab. '24)

The Local Sheet: *B* ~ *B*_{*filaments*}?

- → Translucent, w/ angular spread $\theta_{obs, UHECR} \sim \Delta \theta_{Local Sheet}$
- → Time spread → d_{\min} = extent of $B_{\text{Local Sheet}}$ ~ few Mpc

Galaxy filaments: B ~ 10-100 nG

- → Translucent to UHE nuclei
- → No need for specific treatment

Galaxy clusters: *B* ~ 1-10 µG

→ Calorimeters for UHE nuclei

$$\Delta \theta = 10^{\circ} \times \left(\frac{B}{10 \text{ nG}}\right) \left(\frac{R}{5 \text{ EV}}\right)^{-1} \left(\frac{d}{2 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{10 \text{ kpc}}\right)^{1/2}.$$
$$\Delta \tau = 70 \text{ kyr} \times \left(\frac{B}{10 \text{ nG}}\right)^2 \left(\frac{R}{5 \text{ EV}}\right)^{-2} \left(\frac{d}{2 \text{ Mpc}}\right)^2 \left(\frac{\lambda_B}{10 \text{ kpc}}\right).$$

Condorelli, JB, Adam, ApJ '23

Cosmic-ray propagation in a turbulent magnetic field

- □ From first principles, assuming a quasi-static turbulent *B*-field:
- □ Treatment of propagation using stochastic differential equation (see Achterberg+ '99, Marafico's <u>thesis</u> chap. 6, App. B)
- □ Signal delayed by τ_{del} , temporally spread by $\Delta \tau = \tau_{del} \sqrt{2}$
- \Box Angularly spread by $\Delta \theta$

$$\begin{aligned} \Delta \tau &= \frac{\sqrt{2}\lambda_B}{9c} \left(\frac{cBd}{R}\right)^2 \\ &= 100 \,\mathrm{kyr} \times \left(\frac{B}{10^{-15}\,\mathrm{G}}\right)^2 \left(\frac{R}{0.5\,\mathrm{TeV}}\right)^{-2} \left(\frac{d}{0.75\,\mathrm{Mpc}}\right)^2 \left(\frac{\lambda_B}{0.1\,\mathrm{Mpc}}\right) \\ \Delta \theta &= \frac{2}{3} \frac{cB\sqrt{\lambda_Bd}}{R} \\ &= 20^\circ \times \left(\frac{B}{10^{-15}\,\mathrm{G}}\right) \left(\frac{R}{0.5\,\mathrm{TeV}}\right) \left(\frac{d}{0.75\,\mathrm{Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1\,\mathrm{Mpc}}\right)^{1/2} \end{aligned}$$

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}\boldsymbol{s}} = \hat{\boldsymbol{n}} \quad , \quad \frac{\mathrm{d}\hat{\boldsymbol{n}}}{\mathrm{d}\boldsymbol{s}} = \left(\frac{Ze|\boldsymbol{B}|}{E}\right) \, \hat{\boldsymbol{n}} \times \hat{\boldsymbol{b}} \, .$$

Credit: Bray & Scaife ApJ '18

electrons from TeV gamma-rays in voids

Cosmic-ray propagation in a turbulent magnetic field

- □ From first principles, assuming a quasi-static turbulent *B*-field:
- □ Treatment of propagation using stochastic differential equation (see Achterberg+ '99, Marafico's <u>thesis</u> chap. 6, App. B)
- □ Signal delayed by r_{del} , temporally spread by $\Delta r = r_{del} \sqrt{2}$
- \Box Angularly spread by $\Delta \theta$

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = \hat{\boldsymbol{n}} \quad , \quad \frac{\mathrm{d}\hat{\boldsymbol{n}}}{\mathrm{d}s} = \left(\frac{Ze|\boldsymbol{B}|}{E}\right) \, \hat{\boldsymbol{n}} \times \hat{\boldsymbol{b}} \, .$$

1

$$\Delta \tau = \frac{\sqrt{2}\lambda_B}{9c} \left(\frac{cBd}{R}\right)^2$$

$$= 100 \text{ kyr} \times \left(\frac{B}{10^{-15} \text{ G}}\right)^2 \left(\frac{R}{0.5 \text{ TeV}}\right)^{-2} \left(\frac{d}{0.75 \text{ Mpc}}\right)^2 \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{R}{0.5 \text{ TeV}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{R}{0.5 \text{ TeV}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_B}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{d}{0.1 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2} \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2}$$

$$= 20^{\circ} \times \left(\frac{B}{10^{-15} \text{ G}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right) \left(\frac{d}{0.75 \text{ Mpc}}\right)^{1/2}$$

Voids

Intro

astroparticles & cosmic backgrounds

The physics of propagation *radiative and catastrophic losses deflections, delays and spreads*

Inferences from observations <u>TeV gamma rays</u> EeV nuclei

Outro *summary & open questions*

Known extragalactic sources of gamma rays

Signature of the COB/CIB in gamma-ray spectra

Gamma-ray energy, E [TeV]

Signature of the COB/CIB in gamma-ray spectra

Search for the e⁺ e[−] reprocessed energy

Discovery of extreme TeV blazars in 2006

Hard TeV photon spectrum when corrected for absorption Intrinsic emission expected to be faint in the GeV band

Reprocessed emission?

None in 2010 within point spread function

\Rightarrow minimum *B*-field needed to spread out the signal

Search for the e⁺ e⁻ reprocessed energy

Constraints on magnetic fields in voids

Intro

astroparticles & cosmic backgrounds

The physics of propagation *radiative and catastrophic losses deflections, delays and spreads*

Inferences from observations

TeV gamma rays <u>EeV nuclei</u>

Outro *summary & open questions*

The quest for UHECR origins

Combining observables to search for UHECR origins

Fit of synthetic model of source population to spectrum and composition data

Spectral and composition observables integrated over the sphere \rightarrow help constrain source distance distribution & source escape spectrum

Ankle at > 5 EeV (0.8 J!) marks the transition to a purely extragalactic origin, with the onset of He nuclei

Observed spectral features: instep at 10-15 EeV, toe at 40-50 EeV \rightarrow markers of ~Peters cycle (acceleration up to $E_{max}(Z) \sim Z \times 5$ EeV)

- → hard nuclear emission at sources ($dN/dE \propto E^{\pm 1}$ vs E^{-2} , explained e.g. by escape from magnetized region within the sources)
- → reservoir of heavy elements? Accelerated material from exceptional metal sources / from sources low in H and He.

Anisotropy observables

 \rightarrow break down the flux (and composition) vs arrival direction: pinpoint sources?

if cosmic magnetism does not prevent it!

Some landmarks in Auger anisotropy studies

Starbursts host more frequent stellar explosions...

Marafico, JB+, ApJ '24

Why would UHECR sources be transient?

- → Hillas-Lovelace-Waxman: high-luminosity sources
- → Composition: H/He-poor material from (high-mass) stars
- → Minimum distance: for an observer in a large-scale *B*-field

Mapping out stellar matter in the GZK horizon

JB, **ApJ '21**

Transient model of UHECR sky

Marafico, JB, Condorelli, Deligny, Bregeon, ApJ '24

Spectral & composition model (see also Luce+ ApJ '22)

Increasing value of burst rate per star-formation unit k, for a given B-field in the Local Sheet

Candidate ultra-high-energy sources

Marafico, JB, Condorelli, Deligny, Bregeon, ApJ '24

Candidate ultra-high-energy sources

Marafico, JB, Condorelli, Deligny, Bregeon, ApJ '24

Coherent deflections in the Milky Way Marafico, JB, Condorelli, Deligny, Bregeon, ApJ '24

47

Intro

astroparticles & cosmic backgrounds

The physics of propagation

radiative and catastrophic losses deflections, delays and spreads

Inferences from observations *TeV gamma rays*

EeV nuclei

Outro

summary & open questions

Conclusions and outlook: cosmic-ray propagation

- Measurement of the cosmic-ray spectrum above the ankle (5 EeV) with 1% precision up to instep (15 EeV), 5% up to the suppression (40 EeV) and 30% up to 100 EeV.
- Statistical measurement of nuclear composition up to 40 EeV: $A \nearrow$ as $E \nearrow$ (from shower-depth moments), ongoing improvements with surface detectors → further room for improvement with Auger Prime (radio signals, scintillators)
- High-precision ($Z \sim 7\sigma$) of 6% dipole above the ankle, exciting prospects with Z ~ 5 σ (soon?) for θ ~ 20° anisotropy above the suppression → observational confirmation of extragalactic origin, which sources?
- Propagation losses well constrained, cosmic magnetism too poorly known \rightarrow although dipole and intermediate-scale anisotropies qualitatively reproduced, even the best current models are unable to satisfactorily fit to both
- Sheet Y (Mpc) (H) M81 Θ Andromeda -2 IC 342 Maffei NGC 253 ntersection wit Galactic Plan Intersection with 6.25 Mpc Supergalactic Plan -2 n 2 Sheet X (Mpc)

Local Sheet

Top View

Circinus

Local Sheet $B_{\rm rms} = 0.5 - 20$ nG Can it be measured

through radio observations?

¢ ①

NGC 494

Centaurus A

Counci

Giants

M94 0

Emerging synthesis population models of UHECR sources, promising to solve a long-standing mystery (!), but in-source processes (acceleration, losses, escape) still underconstrained. → use **best-fit synthesis models to constrain B-fields** (in particular Galactic)?

Conclusions and outlook: gamma-ray propagation

- Model-independent measurement of Extragalactic Background Light:
 O-IR backgrounds at *z* = 0 with 10-25% precision depending on λ
- Precision on Hubble constant: 5% (model-dep.) to 10% (model-indep.) assuming no unresolved diffuse component in galaxy counts
 - → could become relevant if Hubble tension not solved by **JWST observations**
- Probe of UV emissivity at high z (e.g. z ~ 6 in Fermi-LAT Science '18) room for improvement with archival and upcoming CTAO data?
 - → timely in the context of JWST observations
- opportunity to probe *B*-field in voids (and study the intergalactic plasma)
 <u>little room left for plasma instabilities as main *E*-loss or *p*-diffusion mechanism
 </u>
 - → comparison with models goes in the direction of primordial origin of *B*-fields, but without clearly preferred mechanism and without irrefutable observations (!)
- □ growing body of studies of cosmic-web impact on propagation (e.g. Bondarenko+ A&A '22, Abdalla+ MNRAS '24)
 → timely in the context of LSST and Euclid observations

Game changer: The Cherenkov Telescope Array Observatory

Backup

Jonathan Biteau

Detection of y-rays near Earth

Satellite-based: 100 MeV - 1 TeV

53

Telescope-based: 100 GeV - 100 TeV

Game changer: The Cherenkov Telescope Array Observatory

HEGRA ('90s)

MAGIC ('00s,'10s)

2 sites to access the entire sky w/ breakthrough performance

Sensitivity: 5-10× better than current *E*-range: 0.02-200 TeV (vs 0.1-10 TeV) *E*-resolution: <10% (vs <17%) >0.2 TeV

CTAO-N ('20s-'40s)

Status and expectations

Current-generation (GeV+TeV - TeV extension): B > 10-100 fG 5 σ CTA-discovery potential up to 300 fG

Credit: CTA Consortium 2021

What is known about the extragalactic background

Zodiacal light, integrated star light, diffuse galactic light (cirrus)¹

The light that remains once (all?) foregrounds are removed

Status of COB-CIB models: a TeV appraisal @ z < 1

Lowest tension with direct measurements and galaxy counts @ z = 0 Lowest tension with TeV γ rays

The largest cosmic-ray observatory ever built

The Pierre Auger Observatory

107

Exposure [km² sr yr]

 10^{3}

10

1990

AGASA

Flv's Eve

West Argentina at 1.400m a.s.l., spread over 3,000 km² (~ Luxembourg or Rhode Island)

1600 water Cherenkov detectors (12t each) to measure secondary particles in air showers + 27 fluorescence telescopes (440 px / cam) to image the air showers during dark time

Phase 1 (2004-2021): ~150,000 events above the ankle over ~80,000 km² yr sr

[km]

10

60

Los

Morados

SD-1500

l oma Amarilla

Event reconstruction: surface detector (SD)

Early

-8

4000

selected station

saturated station

S(1000)

2000

16

14

2

0

-2

-8 -10

/ / km

2010-08-15

82±7

Auger Coll., ApJS 2023

500

1000

signal =2520.4 VEM

1

id =212

rsp=446 m

2 3 4 5 6

Date

Signal / VEM

101

560

480

80

0 1

Energy [EeV]

Event reconstruction: fluorescence detector (FD)

UHECR propagation on extragalactic scales

evolution along propagation:

$$\frac{\partial n_{A_0}(\Gamma,t)}{\partial t} - \frac{\partial}{\partial \Gamma} \begin{bmatrix} n_{A_0}(\Gamma,t)b_{A_0}(\Gamma,t) \end{bmatrix} + \frac{n_{A_0}(\Gamma,t)}{\tau_{A_0}^{\text{tot}}(\Gamma,t)} = Q_{A_0}(\Gamma,t).$$
Energy losses:
Absorption:
Injection:
Source or cascade

Aloiso, Berezinsky, Grigorieva (2013)

Propagation of protons

No absorption term \rightarrow sharp wall at ~ 100 EeV for D ~ 100 Mpc, pile-up feature

Propagation of nuclei

Dominated by single-nucleon photo-dissociation $\rightarrow \sim \exp$. attenuation at ~20/50 EeV for D ~ 100/10 Mpc

Before the Pierre Auger Observatory

64

Today's picture

Shower slant depth: a proxy for $\frac{|A|}{Z}X$

Auger Coll., PoS(ICRC23) by Salamida

Plausible ultra-high energy accelerators

X rays, y rays)

emission (UV, Ha, FIR)

Hillas: only the highest-energy

Confinement, i.e. large B-field, size, and shock velocity: $B \times (r \times \Gamma) \times \beta_{\text{shock}} > (E / Ze).$

Hillas-Lovelace-Waxman: only the brightest

In an expanding plasma, magnetic luminosity: $L_{\rm p} > 3 \times 10^{44} \text{ erg/s} \times (E/Z / 10 \text{ EeV})^2 \times (\Gamma^2/\beta_{\rm shock} / 10).$

Arrival directions: only the numerous

UHECR flux above the ankle: number density x luminosity > 10³⁰ UHECR / Mpc³ / s No significant self-clustering above flux suppression: number density > 10^{-5} / Mpc³ (if deflections < 30°)

Work hypothesis: transient UHECR sources

Active Galactic Nuclei vs Gamma-ray bursts Only the numerous, escape \rightarrow low-luminosity preferred Only the brightest \rightarrow constrains the min luminosity

Effective number density [Mpc⁻³]

Starbursts host more frequent stellar explosions...

Why would UHECR sources be transient?

- → Hillas-Lovelace-Waxman: high-luminosity sources
- → Composition: material from (high-mass) stars

Helium / Heavy nuclei proportion (Marafico, JB+ '24)

 $\frac{M(\text{He})}{M(\text{C} - \text{Fe})} \bigg|_{\text{UHECR}} = 0.21 \pm 0.05_{\text{stat.}} \pm 0.06_{\text{sys.}}$ would be 18 ± 2 if ISM picked-up material

+ good agreement of heavy to intermediate-mass nuclei with composition of massive stars stripped of their H-He envelopes see also Zhang, Murase, Oikonomou '17

Exploiting the HyperLEDA database

Limitations of GLADE / MANGROVE

Mix of overlapping catalogs: risk of duplicate entries, possibly direction-dependent flux limit

Fully exploiting distance databases

Local Volume (1k gal., d < 11 Mpc, Karachentsev+ 2018) and HyperLEDA (5M gal., Makarov+ 2014)

Distance revision: cosmic ladder > spectro-z > photo-z

Cosmic-ladder distances for ~1k nearby objects, spectro-z x 4 \rightarrow 200k/400k within 350 Mpc

Stellar mass estimates

K-band for Local Volume, W1-band otherwise, with $M_{\star}/L = 0.6 (M_{\odot}/L_{\odot})$, i.e. Chabrier IMF

Association results

- 671,593 / 743,480 HyperLEDA pairings (others = 2MASS objects not in HyperLEDA)
- 361 duplicates removed
- 1,387 excluded entries:
 - dubious duplicates removed
 - jetted AGN from HyperLEDA

Observations in the Local Volume

Aim for volume limited sample to d < 11 Mpc or v_{LG} < 600 km/s Distances based on usual cosmic-ladder estimates (supernovae, Cepheids, Tully-Fisher, Faber-Jackson) + tip of the red giant branch \rightarrow avoid biases induced by peculiar motion, distance uncertainty: 5-25%

Information available from Karachentsev+ 2018

- M₊: stellar mass from K band (1022/1029)
- T: de Vaucouleurs' morphology (1028/1029), special attention to dwarfs
- M(HI): atomic hydrogen mass, tracing gas (819/1029)
- SFR(FUV): mostly based on GALEX observations (647/1029)
- SFR(H α): from literature & dedicated surveys (470/1029)

Main sequence of galaxies in the Local Volume?

SFR-M_{*} branch occupied by Irregular (Irr.) and Spiral (S.) galaxies

Small Magellanic Cloud (ESO/VISTA VMC)

Antennae: NGC4038/4039 (ESA/Hubble)

Messier 83 (ESO)

Karachentsev+ 2013

Equatorial coordinates

Main sequence in the Local Volume

SFR tracers in the Local Volume

- Hα: 5-10 Myrs timescale, fraction of ionizing photons from young massive stars absorbed before being reprocessed into Hα
- FUV: 100-300 Myrs timescale, fraction of FUV photons from OB stars absorbed, often combined with total IR to estimate SFR
- \rightarrow both corrected for extinction, i.e. escape from the galaxy

3 SFR-M_{\star} branches

- \rightarrow E-S0: linear (\Box = 1.0-1.1 ± 0.10), i.e. no active star formation
- \rightarrow S: sub-linear (\Box = 0.81-0.69 ± 0.07), active star formation >10 Myrs ago
- \rightarrow Irr: super-linear (\Box = 1.22 ± 0.04), active star formation <10 Myrs ago

Fit results with best morphological divide

- KS-test p-value for Gaussian residuals ~ 5%,
- 4σ outliers \rightarrow hidden variables (metallicity, environment)
- SFR dispersion of S: 0.24 dex (FUV-H α), 0.34 dex (M_{*}-H α)

Mass function

Full-sky, including clones in the ZoA and weights as a function of galactic latitude

Best-fit double Schechter from GAMA-field observations (Wright+ 2017) scaled to observed integral, accounting for local overdensity Low-mass end: (luminosity function) × (fraction of observable objects above 2MPZ sensitivity limit, provided distances)

Completeness

From integral of (GAMA mass function) \times M_{*} above 2MPZ sensitivity limit: weights = completeness(d) \times completeness(b) \in [0.26,1]

 \rightarrow probed volume from 140 Mpc (2MRS) to 350 Mpc (2MPZ) at similar completeness: X 2.6 (distance), X 18 (volume)

 \rightarrow further increase by X 4 (distance) to be expected if full WISE x SuperCOSMOS potential exploited

Validation: do we grasp all M_{\star} and SFR?

1D visualization vs d out to 350 Mpc (vs 135 Mpc in Karachentsev+ 2018)

→ Full-sky plateau beyond 100 Mpc matches deep-field observations (Driver+ 2018)

→ Northern matches Southern hemisphere beyond 100 Mpc: negligible N/S dipole ~ isotropic regime

3D visualization out to 350 Mpc (see interactive figures of the <u>Local Superclusters</u>, <u>Local Clusters</u> and <u>Local Sheet</u>) \rightarrow Good agreement with V-web from Cosmicflows (Hoffman+ 2017, Dupuy +2019) on supercluster scales

SFR estimation in and out the Local Volume

~700 galaxies with tabulated Local Volume morphology

- SFR(H α) measured > SFR(H α) from M_{*}, T_LV
- \rightarrow UL / LL on SFR(Ha) if larger / lower SFR(Ha) from M_{\star}, T_LV

~150k galaxies with tabulated HyperLEDA morphology

- Exploit mapping of T_LV vs T_HL established in Local Volume
- \rightarrow Irr / E-S0 confusion at 10-15% level
- \rightarrow Mass-dependent Irr / S confusion
- SFR(H α) from M_{*}, T_LV(T_HL)
- ~ 260k galaxies without morphological information
- Estimate average T_LV(T_HL) fraction assuming no selection bias
- Weighted average SFR(H α) from M_{*}, T_LV(T_HL) for 3 morphologies

Correction for ionising fraction

- Account for ionising fraction $f = 0.57 \pm 0.21$ (Hirashita+ 2003)
- \rightarrow SFR(total) = SFR(H α) / f Note: large systematic from uncertainty on f

Incompleteness as a function of distance

- Weighted average of \int (GAMA mass function) $\times M_{\star}^{\Box}$: weights(d,b) \in [0.16,1]
- \rightarrow under the assumption of constant weights vs d (partly wrong < 50 Mpc)

Incompleteness in the Zone of Avoidance

Estimated based on galaxy counts in 100-300 Mpc (nearly isotropic distribution)

Equal area galactic latitude bins in inner and outer plane regions ($|I|=30^{\circ}$) Cosmic variance estimated from bin-to-bin fluctuations at $I > 45^{\circ}$

Corrections

Empirical Gaussian(sin b) fit used to infer galaxy weights:

- re-weighting sufficient in outer plane, insufficient in inner plane
- ZoA cut placed at ~50% incompleteness: $I = 3^{\circ} / 20^{\circ}$ for outer / inner plane
- galaxy cloning (as in Lavaux & Hudson's 2M++ 2011) in ZoA region

