
Spoke 3 General Meeting, Elba 5-9 / 05, 2014Spoke 3 General Meeting, Elba 5-9 / 05, 2014Spoke 3 WP 1 and 2 monthly meeting, May 13th, 2025

The OpenGADGET3 code for cosmological simulations

- A technical update -

Milena Valentini

The Open GADGET 3 code: a state-of-the-art code for HPC

Numerical cosmology
Structure formation and evolution

Scientific rationale

Credits: K. Dolag

Credits: S. Borgani

Technical Objectives, Methodologies and Solutions
The OpenGadget3 code

USM

LMU TreePM+SPH code
Highly optimised code: MPI parallelised + OpenMP
Two hydro solvers: improved SPH formalism or MFM
Two sub-grid models (Muppi, and one based on Springel&Hernquist 2003)
Several modules for sub-resolution physics: star formation, stellar feedback, BH accretion
and feedback, chemical enrichment, dust evolution, magnetic fields, cosmic rays

Runs on CPUs and GPUs

Develop Open-GADGET further:

- including additional physics modules

- enhancing code modularity and readability

- improving code performance

Core teams in Trieste and Munich

Main tasks within the WP 2 of Spoke 3

star formation

dust

BH
angular-momentum-dependent gas accretion, dynamical friction, spin evolution
isotropic, thermal AGN feedback + mechanical AGN feedback

formation and evolution of dust, and dust-assisted cooling

thermal, kinetic, and low-metallicity stellar feedback
description of a multi-phase ISM with - based star formationH2

improved cooling table interpolation
stellar evolution and chemical enrichment

MUPPI sub-resolution model

The OpenGadget3 code
USM

LMU TreePM+SPH code
Highly optimised code: MPI parallelised + OpenMP
Two hydro solvers: improved SPH formalism or MFM
Two sub-grid models (Muppi, and one based on Springel&Hernquist 2003)
Several modules for sub-resolution physics: star formation, stellar feedback, BH accretion
and feedback, chemical enrichment, dust evolution, magnetic fields, cosmic rays

Runs on CPUs and GPUs

Develop Open-GADGET further:

- including additional physics modules

- enhancing code modularity and readability

- improving code performance

Core teams in Trieste and Munich

Main tasks within the WP 2 of Spoke 3

M. Gitton-R., A. Saro, M. Viel

The Open GADGET 3 code: a state-of-the-art code for HPC

Our code is on GitLab

We defined a more accurate

working strategy

Quite large (> 30 people

from different institutes)

user community

Re-structuring of the code
(modularity)

Cleaning the code and
documenting its status

The Open GADGET 3 code: a state-of-the-art code for HPC

Ongoing: Performance profiling and benchmarking

Compared scaling (CPU) of
pre-Spoke3 code VS current version
on LUMI

Full-physics run, starting from the
Magneticum ICs
(http://www.magneticum.org/simulations.html)

Similar scaling properties with
slightly better results by the new
version

Currently trying to redo this test with
an evolved simulation (reading in ~10
yr old file is a challenge)

Credits: G. Karademir and L. TornatoreStrong scaling on LUMI

 CPU optimization

Comparison of the required time per time step at
different numbers of particles in each time bin.

black: old

blue: improved loops

red: improved loops and
gradient computation

Loop restructuring leads to a 2x performance in
timesteps with a small # of particles (blue VS black
curves)

Updates on the gradient computation and more
precise memory allocation further increase the
performance (red VS blue)

In total, these improvements speed up the
calculation of the smallest time bins by up a factor
of ~5 (red VS black).

Credits: K. Dolag

Ongoing: Performance profiling and benchmarking

Ongoing: Assessing scalability, targeting performance issues

1. GPU scalability  
 
OpenGadget has most of the modules running on GPUs (thanks to A. Ragagnin, L. Tornatore et al.). 
 
We are assessing in detail the scalability of this implementation in order to highlight the
blocking factors, mitigate their impact or turn to new strategies with greater parallelism 
 

2. Performance issues 
 
Detailed profiling with the assistance of POP and SPACE Centers of Excellence

Coordinator of the work: L. Tornatore

also in collaboration with: and CINECA

GPU offloading status

Ongoing: Assessing scalability, targeting performance issues

OpenACC current status:
— gravity is working reasonably well
— find_hsml module is ported as well
— hydro module is under active development

+ OpenMP:
— successful offloading of gravity module

based on current OpenMP implementation
— it provides similar (~3x) speed-up as the

OpenACC implementation

(See box sizes at http://www.magneticum.org/simulations.html)

s

2×1024³, 120 Mpc, up to 512 GPUs 2×2048³, 240 Mpc, up to 1024 GPUs
1) GPU scalability: Strong scaling speed-up

Ongoing: Assessing scalability, targeting performance issues

Running a suite of tests, we are assessing in detail the scalability, from 4 nodes up to the entire Leonardo

Ongoing: Assessing scalability, targeting performance issues

GPU scalability: more in detail

The gravity tree has some performance issues:  

• Tree Walk à Barnes&Hut is not GPU-friendly Tree algorithm (e.g. Barnes & Hut, 1986) —> hierarchical
multipole method

Key idea: arrange particles in groups, according to their
distance from the considered particle

Particle grouping is by means of a tree structure.

The tree consists in a recursive slicing of the computational
domain into sub-domains (nodes), until a sub-domain which
contains only one particle or none is reached.

The force addition from each group of particles is supplied by
its multipole expansion.

An opening angle (encoding the algorithm precision) decides
whether the force contribution through the multipole expansion
can be computed or if we have to continue walking along the
tree until nodes small and distant enough to provide accurate
force contribution through multipole expansions are reached.

Ongoing: Assessing scalability, targeting performance issues

GPU scalability: more in detail

The gravity tree has some performance issues:  

• Tree Walk à Barnes&Hut is not GPU-friendly
• Communication

The current GPU offloading of Barnes&Hut in OG3 suffers
from three main issues:

• Thread divergence: because the walk is unique per every
particle
• Non-coalesced memory access: as there is no mapping

between particles in memory and in 3D space
• Memory and computation inefficiency: opening nodes is

if-based and the nodes are sparse in memory

Ongoing: Assessing scalability, targeting performance issues

GPU scalability: more in detail

The gravity tree has some performance issues:  

• Tree Walk à Barnes&Hut is not GPU-friendly
• Communication

We are working on a different implementation:
We have extracted a kernel of the code which reproduces the
conditions under which gravity is computed in OG3 (mini-app)
and which will feature the new implementation of the tree, where:

1. the walk is done for a bunch of particles all together instead of for
every single particle, by grouping particles per tree node;

2. the Barnes and Hut scheme is not adopted anymore: a possibility
is to opt for a direct computation of the force within a given radius,
to avoid to check whether nodes have to be opened and the tree
walked further.

Ongoing: The new GPU offloading

Two main strategies:
1. building a tree with more than one particle per leaf, and adopt as for the Barnes&Hut walk the center of mass of the

leaf to which the particle belongs.
2. Introducing a partitioning of particles such as particles belonging to the same “boxleaf” are also in the same memory

segment.

Results:
 — assigning each leaf to a different OpenACC instruction makes threads within the same directives follow the same
Barnes&Hut walk (reduced thread-divergence),
— memory access are on data that are close in memory (coalesced memory access).

Two main strategies:
1. building a tree with more than one particle per leaf, and adopt as for the Barnes&Hut walk the center of mass of the

leaf to which the particle belongs.
2. Introducing a partitioning of particles such as particles belonging to the same “boxleaf” are also in the same memory

segment.

More in detail on the local tree construction:
NOT geometric anymore, but completely based on the Peano-Hilbert space-filling curve, in particular:
◦ each node of the tree corresponds to a “cube” of the Peano-Hilbert curve;
◦ nodes indexing is done in Peano-Hilbert order;
◦ particles are assigned to leaves according to their Peano-Hilbert keys (i.e. particles belonging to the same leaf are stored

contiguously in memory).

The new GPU offloading (in short):
1. refactoring of the Barnes&Hut algorithm towards an enhanced GPU effectiveness;
2. a new tree construction, branchless and extremely GPU-friendly.

Ongoing: The new GPU offloading

Ongoing: Assessing scalability, targeting performance issues

With the assistance of the POP CoE, and within the SPACE
CoE, we are profiling in details the code’s behaviour. 
 
The results are summarized in tables, as sketched in the
figure on the left 
(here the example is for the gravity-tree; rows are different
metrics, columns refer to the total number of threads)
 
from which some key indicators can be collected

2) Performance issues: vectorization

Ongoing: Assessing scalability, targeting performance issues

2) Performance issues: vectorization

The low IPC (Instructions Per Cycle), although constant with
decreasing workload, indicates that the computational
efficiency is not high. 
Further inspection returned that in particular the
vectorization ratio is very small (~10%) and limited to
128bits registers 
 
 the main target is to re-formulate the data structures
that now consists in Arrays of (large)Structures

Ongoing: Assessing scalability, targeting performance issues

Vectorization ratio achieved on average (= fraction of vector floating
point (FP) instructions issued to the total number of FP instructions)
under different assumptions.

We have tested the effect of different data layout on the
achievable vectorization in a loop that reproduces the N-Body
pattern, assuming that:
- A fraction of particle is active
- Every active particle interacts with its neighbours
- Neighbours are not close in memory

We experimented AoS, AosS and SoA with some carefully crafted
loops to
- enhance auto-vectorization by the compiler (AoS, SoA)
- test compilers vector extensions (AosSv)
- explicitly use vector intrinsics (AosSi, SoAi)

Also, we have tested the effect of enhancing the memory
contiguity (v1 VS v2) on different compilers (gnu VS intel)

Cons of vector instructions: every instruction requires more CPU
cycles, the CPU frequency is generally decreased for an intense
vector burst

2) Performance issues: vectorization
Credits: L. Tornatore

Ongoing: Assessing scalability, targeting performance issues

2) Performance issues: vectorization
Credits: L. Tornatore

Results from LEONARDO DCGP, obtained by measuring performance counters via PAPI

1. A large vectorization
fraction with the wrong
data layout is not an
advantage (e.g. AosSv)
because a larger # of
instructions is issued
and the cpu frequency is
decreased

2. Smaller structures offer
~10% of gain in terms of
run-time (e.g. AosSv)

3. Memory contiguity
seems to be the most
promising trick (go from
v1 to v2), especially if
the compiler is good in
spotting opportunities
(see icx vs gcc in
v2.AoS)

Next Steps and Expected Results

Ongoing:

• As for now, the new tree is built on CPUs and then moved to GPUs, where the Barnes&Hut walk is
performed. The used algorithm is mostly recursive, however we are working on a non-recursive
version for tree construction on GPUs.

• Validation of the new gravity solver is ongoing by comparison with current OG3 implementation.

• Additional modification to build a Tree which is suited for GPUs (similar to the Cornerstone octree,
by Keller+ 2023). Here, particles are subdivided in boxes: particles in the same box interact via
direct sum, particles on different boxes interact using the Barnes&Hut algorithm over the
Cornerstone tree.

•Working on topology awareness: capability of the code to explore the NUMA topology of a machine.

So far, results in line with timescale, milestones and KPIs identified.

