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Computer Vision Tasks

Image Semantic Object
Classification Segmentation Detection
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Image Classification

Given a set of discrete labels

(dog, cat, truck, plane, ...

> CAT
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Semantic Segmentation




Semantic Segmentation




A naive approach

Semantic segmentation is basically a classification problem

Classify center
Extract patch  ixel with CNN

Full image
Y has




A naive approach

Semantic segmentation is basically a classification problem

Classify center
Extract patch  ixel with CNN

Full image
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Fully convolutional networks (FCNSs)

A stack of conv layers to make predictions all at once

Conv

Conv

~

Convolutions:
DxHxW

Conv

argmax
—

Scores: Predictions:
CxHxW HxW




Fully convolutional networks (FCNSs)

A stack of conv layers to make predictions all at once

Pixel-wise softmax activations

N - - l - -
—_— —_— —_— —_—
RS J Scores: Predictions:
CxHxW Hx W
Convolutions:
DxHxW \/
Feature extractor Final output retains original image

dimensions



Fully convolutional networks (FCNSs)

A stack of conv layers to make predictions all at once

Conv argmax
—_— —_—

Y Scores: Predictions:
CxHxW HxW

Conv

Convolutions:
DxHxW

Convolutions at original image resolutions could be very expensive



Fully convolutional networks (FCNSs)

A stack of conv layers, with downsampling and
upsampling, to make predictions all at once

Med-res: Med-res:
D2 x H/4 x W/4 sz H/4 x W/4

[

Low-res:
D3 x H/4 x W/4

Input: High-res: High-res:

Predictions:
3XHxW D1xH/2xW/2 D1xH/2xW/2 Hx W



U-Net
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Ronneberger et al. "U-net: Convolutional networks for biomedical image
segmentation." MICCAI2015. [Paper]


https://arxiv.org/pdf/1505.04597
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U-Net
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U-Net
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Segmenter

Segmenter
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Strudel et al. "Segmenter: Transformer for semantic segmentation." ICCV2021. [Paper][GitHuUDb]



https://arxiv.org/abs/2105.05633
https://github.com/open-mmlab/mmsegmentation/tree/master/configs/segmenter

Segmenter

" REPLAY
RACE SUSPENSION

Strudel et al. "Segmenter: Transformer for semantic segmentation." ICCV2021. [Paper][GitHuUDb]



https://arxiv.org/abs/2105.05633
https://github.com/open-mmlab/mmsegmentation/tree/master/configs/segmenter

Segment Anything Model (SAM)

Kirillov et al. “Segment anything”. ICCV2023. [Paper][GitHuUb] Image by Meta Al



https://segment-anything.com/
https://openaccess.thecvf.com/content/ICCV2023/papers/Kirillov_Segment_Anything_ICCV_2023_paper.pdf
https://github.com/facebookresearch/segment-anything
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Kirillov et al. “Segment anything”. ICCV2023. [Paper][GitHuUb]



https://openaccess.thecvf.com/content/ICCV2023/papers/Kirillov_Segment_Anything_ICCV_2023_paper.pdf
https://github.com/facebookresearch/segment-anything
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Kirillov et al. “Segment anything”. ICCV2023. [Paper][GitHuUb]


https://openaccess.thecvf.com/content/ICCV2023/papers/Kirillov_Segment_Anything_ICCV_2023_paper.pdf
https://github.com/facebookresearch/segment-anything




ocalization

Predict coordinates of a bounding box (X, y, w, h) that contains an entity.



Object detection

DOG, DOG, CAT



Object detection as a Regression problem

CAT: (x,y,w, h)

DOG: (X, vy, w, h)
DOG: (x,y,w, h)
CAT: (x,¥,w, h)
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Object detection as a Regression problem

CAT: (x,y,w, h) 4 numbers
DOG: (X, vy, w, h)
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Object detection as a Regression problem

e CAT: (x,y,w, h) 4 numbers

—- [ DOG:(x,y,w, h)
\f{é ,A - DOG: (x,y,w, h) 12 numbers
” F 7 CAT:(x,y,w, h)

— Gy DUCK: (X, y, w, h)
V DUCK: (x, y, w, h) ~many numbers

lllll

Each image can contain different number of entities



Object detection as Classification
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pooling pooling




Object detection as Classification

2\-5.'.:}"}1'21';23 ><ﬁ><m dense DOG? YES
13 CAT? NO

) 13 dense idense
= Background? NO
128 Max || L °
Max 8 Max pooling 29% 2048

pooling pooling




Object detection as Classification

2\-5.'.:}"}1'21';23 ><ﬁ><m dense DOG? YES
13 CAT? NO

) 13 dense idense
= Background? NO
128 Max || L °
Max 8 Max pooling 29% 2048

pooling pooling




Object detection as Classification

28 207 zoag \dense DOG? No

=Y Y [ CAT? YES
- || || = Background? NO

pooling pooling




Object detection as Classification

DOG? NO
CAT? YES
Background? NO

SLIDING WINDOW



Object detection as Classification

Lk = a?_',f"j-:—::—;a ><m><m eeeee D O G ? N o

Background? NO

333333

SLIDING WINDOW
INeed to apply CNN to huge number of locations and scales




Region Proposals

Two Stage Object Detection
Bounding

o Regression Boxes
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Object detection: The

RCNN Family

R-CNN: Regions with CNN features

SONER s
i {' (Al I.L "‘E'I?f""‘

warped region 5 aeroplane? no.

1. Input 2. Extract region 3. Compute 4. Classify

person? yes.

tvmonitor? no.

image  proposals (~2k) CNN features regions

Girshick et al. "Rich feature hierarchies for accurate object detection and semantic
segmentation.” CVPR2014. [Paper]


https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

Fast R-CNN

Predictions from sliding windows on feature maps

Outputs: bbox

softmax regresso

I,

Conv “\_ Rol feature
feature map vector

For each Rol

He et al. "Spatial pyramid pooling in deep convolutional networks for visual
recognition." I[EEE TPAMI 2015. [Paper]


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7005506

Faster R-CNN

classifier

Generate also candidate locations ”pm

‘ 2k scores ‘ l 4k coordinates | i k anchor boxes prOPOV . S /
cls layer \ ’ reg layer . ‘ :
: |

Region Proposal Network 4
l 256-d . feature maps
t intermediate layer
\ \ . conv layers ,

SIiding Wi“dﬂw
‘

conv feature map

Region Proposal Network Figure 2: Faster R-CNN is a single, unified network

for object detection. The RPN module serves as the
‘attention” of this unified network.

Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal
networks." NeurlPS 2015. [Paper]


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7005506

Some results




You Only Lock Once: YOLO

YOLO: from input image to tensor scores with one single convolutional network

448 Sﬁi . JSEE 28 JE—\"
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28
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Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers  Conn. Layer  Conn. Layer
7x7xb64-52 3x3x192 1x1x128 1111256})!4 1x1x512 1,5 3x3x1024

Maxpool Layer  Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024

2x2-52 2x2-52 Ix1x256 1x1x512 3x3x1024
Ix3x512 Ix3x1024 3x3x1024-5-2
Maxpool Layer  Maxpool Layer
2x2-s5-2 2x2-5-2

The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

Redmon et al. "You only look once: Unified, real-time object detection." CVPR 2016. [Paper]


https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf

You Only Lock Once: YOLO

Final detections

-

S ><S grid on ipu

Class probability map

Redmon et al. "You only look once: Unified, real-time object detection." CVPR 2016. [Paper]


https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf

You Only Lock Once: YOLO

Redmon et al. "You only look once: Unified, real-time object detection." CVPR 2016. [Paper]


https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf

Convolutional Set of Transformer
neural — image encoder-
network features decoder

Set of box
predictions

> No object {0} No object {0}

Bipartite matching loss

Carion et al. "End-to-end object detection with transformers." ECCV 2020. [Paper][GitHuUb]


https://arxiv.org/pdf/2005.12872
https://github.com/facebookresearch/detr/tree/main

Carion et al. "End-to-end object detection with transformers." ECCV 2020. [Paper][GitHuUb]



https://arxiv.org/pdf/2005.12872
https://github.com/facebookresearch/detr/tree/main
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Goal of sequence modeling é@

RNNs use recurrence to model sequence dependencies

Sequence of inputs Q ° Q @ @ Q

t
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Goal of sequence modeling

RNNs use recurrence to model sequence dependencies

Sequence of features > > > >
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Sequence of inputs




Goal of sequence modeling

Sequence of outputs

Sequence of features

Sequence of inputs

RNNs use recurrence to model sequence dependencies
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Goal of sequence modeling

Encoding bottleneck

Slow, no parallelization

Not long memory

T

°96 690
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Goal of sequence modeling

/

J" Continous stream
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%) Parallelize
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Q Long memory
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How can we eliminate the need for recurrence?
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Goal of sequence modeling

How can we eliminate the need for recurrence?

|Idea: feed everything as

dense networks

v |
X
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TRANSFORMERS
ARCHITECTU RE

The Encoder and Decoder



Architecture
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Predictions
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Architecture
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Architecture
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Architecture

A

Input Embeddings

1

Source Sequence




Architecture

What is the source sequence?

Input Embeddings

1

Source Sequence




Architecture

What is the source sequence?

Input Embeddings

« The Transformer is an innovative NLP mode/»

1

Source Sequence



How can we model text? ;@

« The Transformer is an innovative NLP model/»

A tokenizer divides a
text into smaller parts
called tokens

The Transformer is @ an innovative NLP = mode/



How can we model text? ;@

P «The Transformer is an innovative NLP mode/»

Vocabulary

The

Transformer It uses a vocabulary to

convert tokens into
token ids

is
an
innovative
NLP
model

O h~,WN-O0



How can we model text? 3@

The 0
cat 1 We don't train a model
is 2 with a single sentence...
..We use corpora
provide 29998

access 29999



How can we model text? ;@

« The Transformer is an innovative NLP model/»

The 0
cat 1 In a vocabulary we
is usually have thousands
of tokens
provide 29998
access 29999

0 1489 2 | 67 13679 946 103



Architecture

Input Embeddings

K
What is the source sequence?
\
A sequence of tokens T:
(1,T) - time dimension

- sequence length
- number of tokens

1

Source Sequence



Architecture

Positional
Encoding
Embeddings/
Projections
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Embeddings

(d_model, T)

(n_embeddings, d_model) Embeddings

out = Wx

(1,T)




Architecture

Positional
Encoding
Embeddings/
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Source Sequence




Architecture

We have no recurrence

Transformer has no idea of the order of tokens

|

Positional
Encoding
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Embeddings/
Projections
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Source Sequence




Architecture

[Positional

Why the order matters? Encoding

Sl

Even though she did not win the award, she was satisfied.

Even though she did win the award, she was not satisfied.

>

Embeddings/
Projections

)

Source Sequence
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Positional Encoding @

(d_model, T)

(d_model, T)

How can we model positional information?

200 @0



How can we model positional
InNformation?

r Absolute index

: : €o Po €1 P1 €> P2 er
r Normalized index
0.73 ? 0.53 ? 0.43 ? 0.01
0.65 ? 0.63 ? -0.65 ? 0.05
+ + +
-0.31 ? -0.01 ? 0.31 ? -0.31

r
r Learnable parameters

0.29 ? 0.49 ? -0.29 ? 0.29
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Architecture
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Architecture

0.73

0.65

-0.31

0.29

hq h
0.53 0.43
0.63 -0.65
-0.01 0.31
0.49 -0.29
Multi-Headed
Self-Attention
€1 €2
0.53 0.43
0.63 -0.65
-0.01 0.31
0.49 -0.29

hr
0.01

0.05

-0.31

0.29

0.01

0.05

-0.31

0.29

Nx
"Layers"”

Sublayer

Multi-Headed
Self-Attention

Sy




Self-attention

He went to the bank and learned of his empty account,
after which he went to the river bank and cried.




Self-attention

T

He went to the bank and learned of his empty account,

after which he went to the river bank and cried.
N—




Self-attention

T

He went to the bank and learned of his empty account,

after which he went to the river bank and cried.
N—

The meaning of every word can be
regarded as the sum of the words it
pays the most attention to



Self-attention
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Self-attention

Linear
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Self-attention
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k-means clustering




= Youlube  k-means clustering
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Self-attention
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Self-attention
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Self-attention
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Self-attention
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Self-attention

Linear
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Softmax
Q K Vv
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Self-attention

Linear
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Self-attention

7 x7

Linear

7x3

Concatenate

QKT
softmax \/d_ |4 context matrix
k

Q K v

Linear Linear Linear




Self-attention

7 x7
Linear 7 x3
Concatenate
X =
Q- KT
softmax Nen 1% context matrix
k

Q K 14

Linear Linear Linear

Attention weighting



Multi-headed Self-Attention

Linear

Concatenate

All this work is done by a single head...

“ .. but we have multiple heads

Softmax
Scale
MatMul
0 K 4
Linear Linear Linear

Attention weighting



Multi-headed Self-Attention

Linear

Concatenate

Output of attention head |

Output of attention head 2

Q K v

Linear [ Linear ] [ Linear ]

/ Output of attention head 3




Multi-headed Self-Attention

7 x3 7x3 7 x3




Multi-headed Self-Attention

7 x3 7x3 7 x3

7x9




Multi-headed Self-Attention
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Architecture

Nx
"Layers"”

1\,‘.\

)

Norm \

1

1

1

1

1

1

|

Multi-Headed l
Self-Attention :
A A A !
\{ K Q I
Y )




Architecture

To the output of Multi-Headed
Self-Attention we apply:

A Residual Connection:;
« A Normalization Block:

« Batch Normalization
« Layer Normalization

Nx
"Layers"”

™ "= 1

Sublayer

Multi-Headed
Self-Attention

Sy

MR




Architecture '

A Feed-Forward layer ends the
encoder stack.

Nx
"Layers"

Linear(4 * Amodel Amodel)

RelLU

Linear(dmodel: 4 * dmodel)
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What Is target sequence? 5@

Like the source sequence...

It is a sequence of tokens ]
(1,T) which tokens?

T:
- time dimension
- seguence length
- number of tokens



What Is target sequence? @

which tokens?

The sequence we want to predict!

Source sequence Target sequence

‘b Q)

S & ®
§ A Q < 3 L s L

Q
O &
N

N
AO \0 o N v < °
& S




What Is target sequence? é@

which tokens?

The sequence we want to predict!

Source sequence Shifted target sequence

& & g

> & & >
§ A Q S $ £ < N

Q
O &
N

N
A\O \0 o N v < °
@ $




What Is target sequence? é@

which tokens?

The sequence we want to predict!

Source sequence Shifted target sequence

‘b Q)

\\, IS
§*Q o? R
N

S




What Is target sequence? é@

which tokens?

The sequence we want to predict!

Source sequence Shifted target sequence

‘b Q)

\\, IS
§*Q o? R
N

S
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Predictions

A 7
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Architecture s 2
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Predictions
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Architecture Ty
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Masked Self-Attention

We don’t want to cheat




Masked Self-Attention

Linear

Concatenate [SOS] you  win or  you die [EOS]
[SOS]

MatMul Jou
win

Softmax

or
you
die
[EOS]

Linear Linear Linear




asked Self-Attention

[SOS] you win or

[SOS]
Linear
you
Concatenate or
you
MatMul
[EOS]
Softmax
[SOS]
you
__win
or
you
die
X
Linear Linear Linear ) ([E0S]

-inf
-inf
-inf
-inf
-inf

0

0 -inf -inf -inf -inf -inf -inf
0 O -inf -inf -inf -inf
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0 0 O 0O O0 -inf
0O 0 O 0 O
0O 0 O 0 O
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-inf -inf -inf -inf
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-inf -inf -inf




Masked Self-Attention

Linear

Concatenate

MatMul

Linear

Linear

Linear

[SOS]

you

win

or

you

die

[EOS]

[SOS] vyou win or you die [EOS]




[SOS]

you

win

you

die

[EOS]

1 0 0 0 0 0 0
0.01 0.99 0 0 0 0 0
0.001 | 0.004 | 0.995 0 0 0 0
0.003 | 0.004 | 0.003 | 0.99 0 0 0
0.003 | 0.003 | 0.04 | 0.02 | 0.93 0 0
0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.995 0
0.00 | 0.00 | 0.05 | 0.03 [ 0.17 | 0.00 | 0.75




Cross-Attention

Multi-Headed Self-Attention

A >
o >

+
'
- /)

Multi-Headed Cross-
Attention

¥ § ¥
v K Q
JZ J J

Queries, Keys and Values
all come from the same
seguence

Queries come from the
target sequence.
Keys and Values come
from the source sequence
(last hidden states)



Cross-Attention j@

Multi-Headed Cross-
Attention

)
K
j(

Queries come from the
target sequence.
Keys and Values come
from the source sequence
(last hidden states)

Keys and Values always
come in pairs

* 1
Vv Q
_J J




The final linear layer

As always, all tasks can be regarded as
classification or regression problems

Here we have a classification problem:

« foreach input token we want to predict
the next one

e we choose between all the known words
(the size of vocabulary)

1
! Feed-Forward

Feed-Forward
Network

Nx | »————H—————-
Layers Norm
Multi-Headed
: Self-Attention
A A A
\"
—
A
Positional
Encoding

Embeddings/
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Source Sequence
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Norm

Network

———————————

Norm

Nx
"Layers
Multi-Headed
1 | Cross-Attention
A 4 4
v K Q
Masked
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1 | Self-Attention
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Encoding
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Shifted
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The final linear layer

] ]
] logits
= O (class probabilites)
The 0
cat 1 ] =
is 2 I
F;che':: ggggg Linear dmodel X NUM¢igsses
30k words in our I
vocabulary

= 30k classes
Final embeddings
(last hidden states)



The Transformers Family

We don't need always the
complete architecture.

We can have:
 Encoder-Only Models

* Decoder-Only Models
 Encoder-Decoder Models




The Transformers Family -

Encoders are suitable anytime
we want to represent a
seguence in a latent space

Famous Encoder architectures:
« BERT

« ELECTRA
* VIT

Embeddings/
Projections

Shifted
Target Sequence



The Transformers Family

Decoders are suitable
anytime we want to generate
something (Text Generation)

Famous Decoder
architectures:

. GPT




The Transformers Family

Encoder-Decoder is used
anytime we want to predict
a nhew sequence given a
source sequence (Machine
Translation, Forecasting,
Summarization...)

Famous Encoder-Decoder
models:
« BART
« T5




. VISION TRANS




Transformers were born for text...

* Transformers are domain-agnostic models, designed to
process any type of sequential input.

* ANy input that can be represented as a sequence of
tokens can be fed into a Transformer model:
« Audio
* Protein sequences
 Time series
« EEG signals



VWhat about
Images?



How can we convert images to
seguences?

* Images are 2D grids of pixels, not sequences.




How can we convert images to
seguences?

* Images are 2D grids of pixels, not sequences

But...




How can we convert images to
seguences?

* Images are 2D grid of pixels, not sequences

N B But..

H«F ﬁ L ..wecanreshape them into a sequence of patches




How can we convert images to
seguences?

SRR _ “ |
ﬁwg 2241 it T Ls-

1) Image is divided into patches 2) Each patch is treated as a token in a sequence

3) Since patches have 2 dimensions they are flattened



VIT Architecture

Vision Transformer (ViT)
Then, we can use the MLP \
. Head
Transformer Architecture —

as we know

Transformer Encoder

m;:;u&m{;@ﬁ@é

Extra learnable

[class] embedding Linear Prﬂ]ﬂctlﬂﬂ of Flaltened Patl:hﬂs

#%——a!al'lm
Al s

An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale”. ICLR2021. [Paper]

| 1)

Dosovitskiy et al.



https://arxiv.org/pdf/2010.11929

VIT Architecture

Vision Transformer (ViT)
Then, we can use the MLP \
. Head
Transformer Architecture —

as we know

Transformer Encoder

-‘nfl@ﬁ@é

We are add | ng the SpeC|a | [class] embedding LII"IE:EIT Pfﬂjﬂﬂtl{]ﬂ (}f Flaltened Pﬂtﬂhﬂs

[CLS] token to the BEE | |

embeddings. Hi o . —’a. .'}m"
Ay s

Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale”. ICLR2021. [Paper]

Patch + Position
Embeddir



https://arxiv.org/pdf/2010.11929

VIT Architecture

Vision Transformer (ViT)

o= Ty

/7 ~

\
MLP |\
Head | I

/
~ 7’

Then, we can use the
Transformer Architecture
as we know

Transformer Encoder

- O DD D) @ﬁ]

Extra learnable

At the end we use on |y the [class] embedding Lmear Pfﬂjﬂctlﬂﬂ (}f Flaltened Pﬂtﬂhﬂs
[CLS] hidden state to classify BEE | |

our image Hen —"a . . '}m"
T

Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale”. ICLR2021. [Paper]



https://arxiv.org/pdf/2010.11929
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CLIP

Text Encoder Image Encoder




CLIP

Text Encoder

Image Encoder

cat




CLIP

Text Encoder

Image Encoder

Gandalf .



CLIP




CLIP




CLIP




CLIP

What if we force encoders to
have the same representation
for the same concept?

Text Encoder Image Encoder




Contrastive Image Language
Pretraining

Pepper the
ussie pup

Cute cat
looking in
camera

A nigth sky
with
galaxies




Contrastive Image Language
Pretraining

A nigth sky
with
galaxies




Contrastive Image Language
Pretraining

A nigth sky
with
galaxies

Image

Encoder




Contrastive Image Language
Pretraining

A nigth sky
with
galaxies

Image
Encoder



Contrastive Image Language
Pretraining

A nigth sky Text g-

with Encoder
galaxies

Image
Encoder



Contrastive Image Language
Pretraining

A nigth sky
with
galaxies

RN

Encoder

Image
Encoder




Contrastive Image Language

Pretraining

A nigth sky
with
galaxies

Text
Encoder

Image
Encoder

SHARED
MULTI-MODAL
EMBEDDING






Training a Neural Network .

Data Computing Resources




Training a Neural Network

Data

Label Availability (Labeled/ Unlabeled)

Temporal Availability (Offline / Continual)

Data Distribution (Centralized / Federated)



Label Availability N

]II] = Expensive annotation (possibly requiring domain expertise)
| Relatively small datasets

o High-quality training signal (?)

Labeled

gjﬁ)@ Easy to collect

. g L
@ Abundant supply

|%° |;| No explicit Supervision

Unlabeled




Supervised Learning (SL)

@"8"@

Input Manual Label
l annotation
- \ ﬂA
Joo= Y
/ >
B
Model Loss

For each observation x; there is an associated response y;



Self-Supervised Learning (SSL)

Vg N\

Input Target Label
generation

&t = L <—I

Model Loss

For each observation x; a response y; is generated from the data itself



Self-Supervised Learning (SSL)

generatlon

Algorithmic procedure _
(no human annotation) N\

/

Model Loss

For each observation x; a response y; is generated from the data itself



Unsupervised Learning (UL)

Model

No response y; is provided: the model learns patterns directly from the input x;



Self-Supervised vs Unsupervised

 Both assume the lack of manual annotated supervisory signals

» Different objectives:

« UL: identify patterns in data, usually for clustering, dimensionality
reduction, anomaly detection.

« SSL: learn a data representation that can be transferred to other tasks

» Self-Supervised Learning tends to use loss functions typical of
supervised learning (e.g., MSE, NLL)

O



Self-Supervised Learning

« How to generate effective labels?

« Design a prediction task that requires high-level
understanding of the inputs



Pretext tasks

 Hand-craft a task that requires domain knowledge to be solved
» Generally posed as a classification problem
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Colorization

conv8

Lightness L
convl conv2 conv3 conv4 convs conve conv?
atrous / dilated a trous / dilated
- 64_
128
256 512 12 912 512 /
| ] ] f f f
2 64 32 32 32 32 32
128
(a,b) probability
distribution

313

256

-110

RGB(a,b|L =50)

55

110
-110

| :
-55 0 55 110

313 classes



Rotation

iInput

label 90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

4 classes



Temporal Availability (-
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Offline Learning

All data is available at once
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Temporal Availability (I)

Time
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Temporal Availability (Z)

&

ARt O P
i Task t |

Task t training data

SmE Ve
SEER T LT

Continual Learning
Data arrives in a stream and cannot be stored



Continual Training
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Continual Training
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Continual Training
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Continual Training
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Continual Training
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Continual Training
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Continual Training

Continual learning
Evaluation after t tasks:

ship
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Continual Training

airviene 5 [ B Isolated learning
e Em Evaluation after training: |
- - Do gw I
"y Tmald ¥ - = & > 93.25 % Accuracy
« EEwE .

deer '.R ) ) 00
dog e~ Continual learning pf fe=3
frog R Evaluation after t tasks: T, T, T, T, T, T,

orse i R B0 6

ship

— iCaRL

------- = LwEMC
60%. % e e fixed repr.
50% o e R Il finetuning

truck

S 888
I

E‘:{-\ ud

Accuracy

40% LT .

.“ vy
30%
20% St
==c= = . 10% B -«
T4

tZ > 10 20 30 40 50 60 70 80 90 100
Number of classes

Performance




. . 8
Data Distribution o

x Poor performance
Not enough data
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Data Distribution o

x Poor performance
Not enough data
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Superior results
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</ Superior results

Privacy breach
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Data Distribution
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Federated Learning

Data remains distributed across multiple clients, only model updates are shared
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