DEEP LEARNING APPLICATIONS

+

0

+

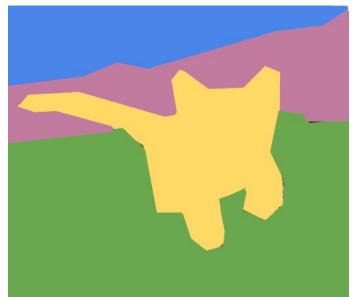
0

Computer Vision Tasks

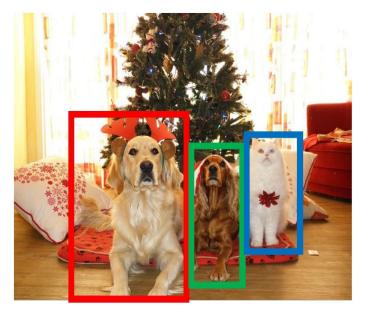
Image Classification

CAT

Semantic Segmentation



CAT, GRASS, TREE, SKY Object Detection

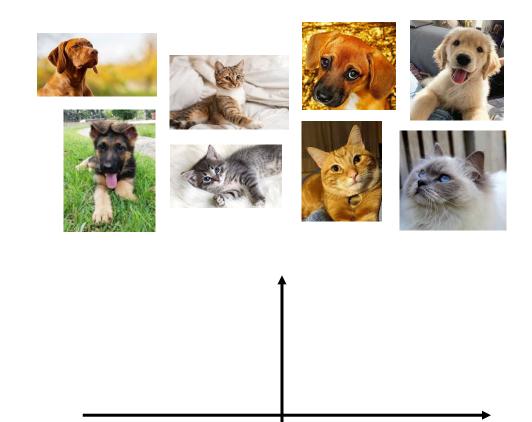


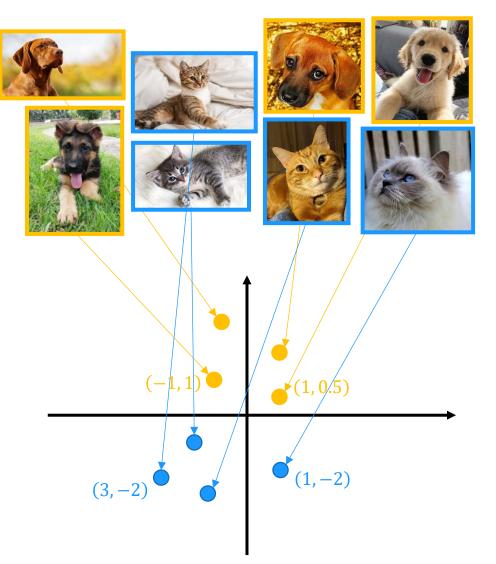
DOG, DOG, CAT

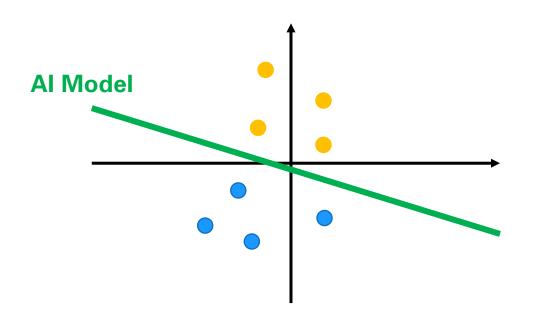
Given a set of discrete labels

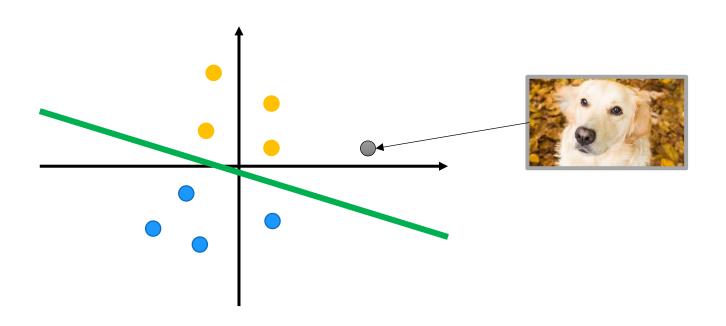
(dog, cat, truck, plane, ...)

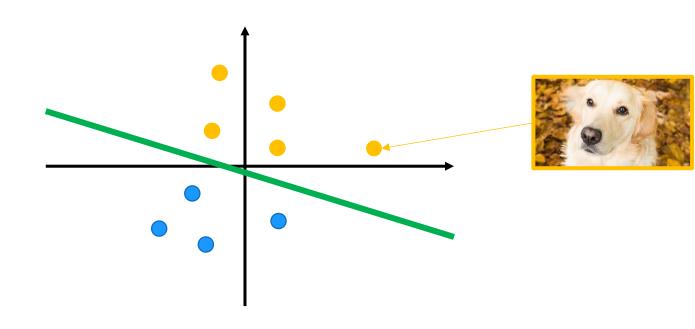
CAT











SEMANTIC + SEGMENTATION +

0

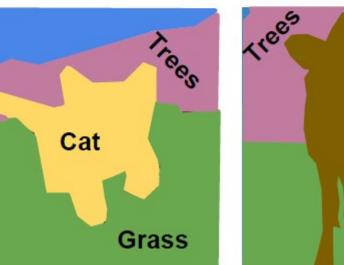
Semantic Segmentation

This image is CC0 public domain

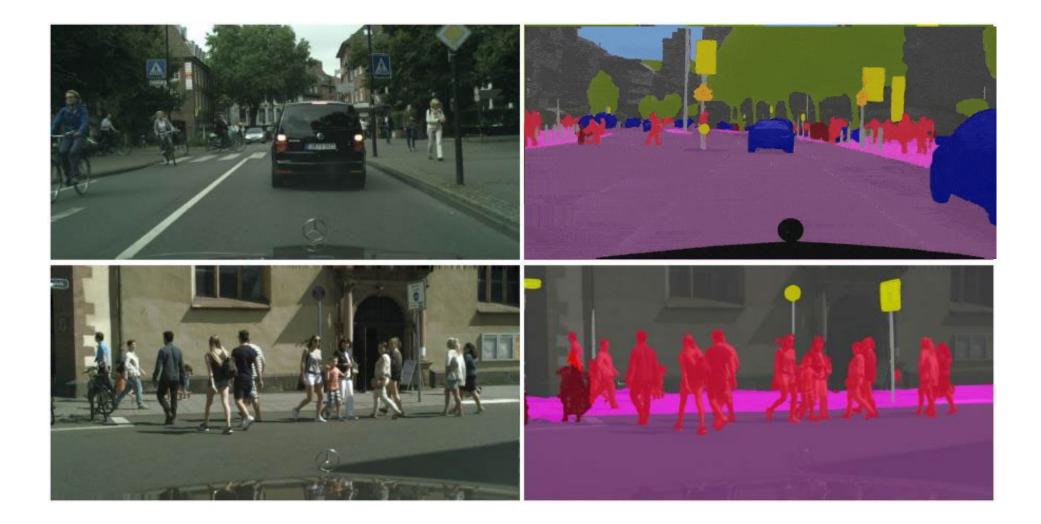
Cow

Sky

Grass

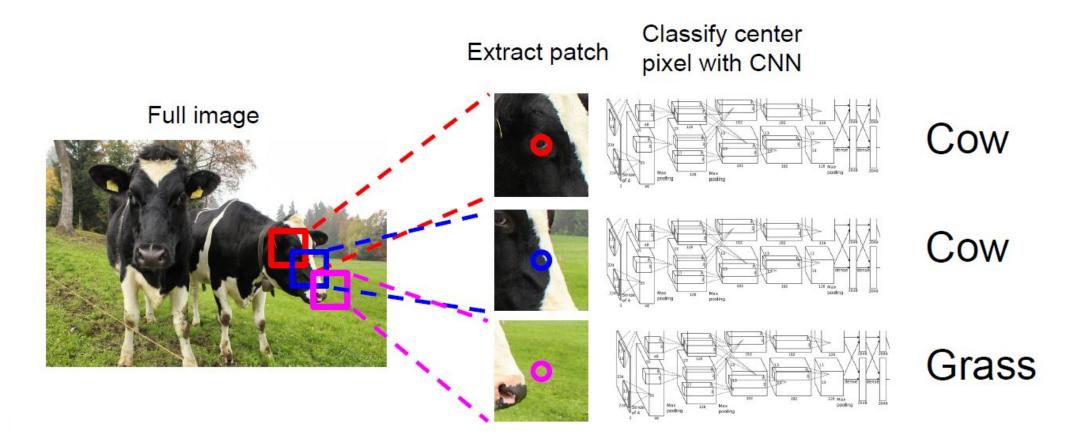


Semantic Segmentation



A naïve approach

Semantic segmentation is basically a classification problem

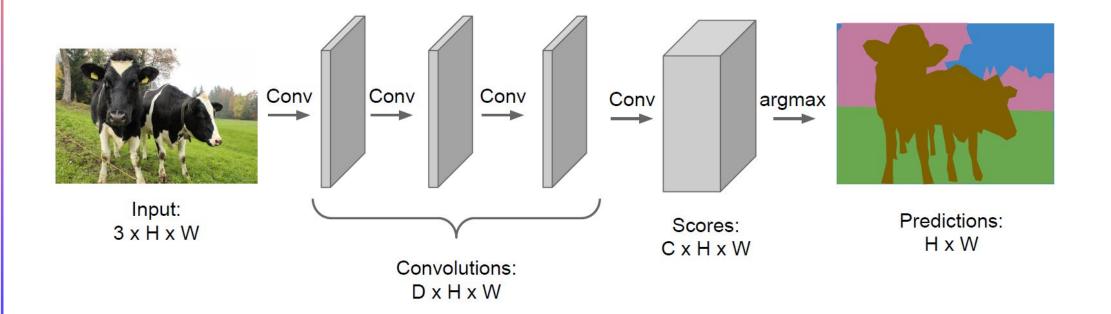


A naïve approach

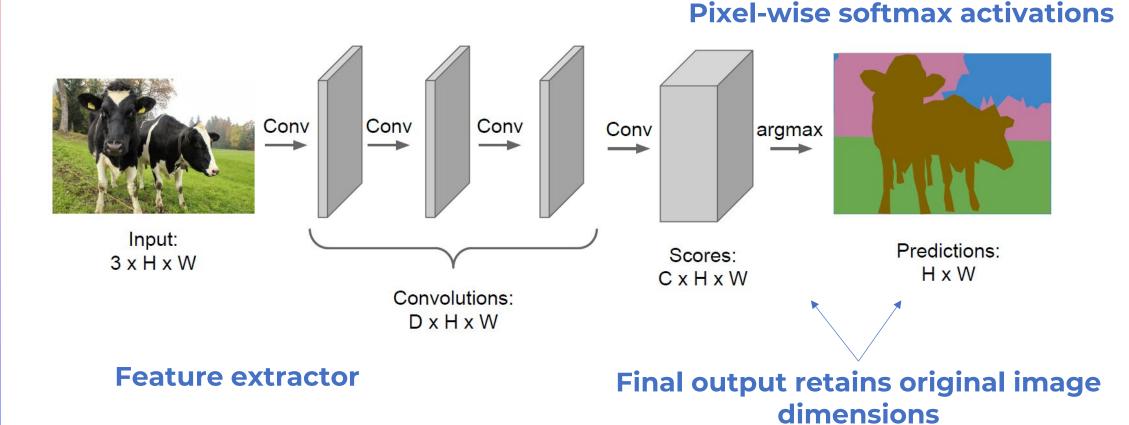
Semantic segmentation is basically a classification problem



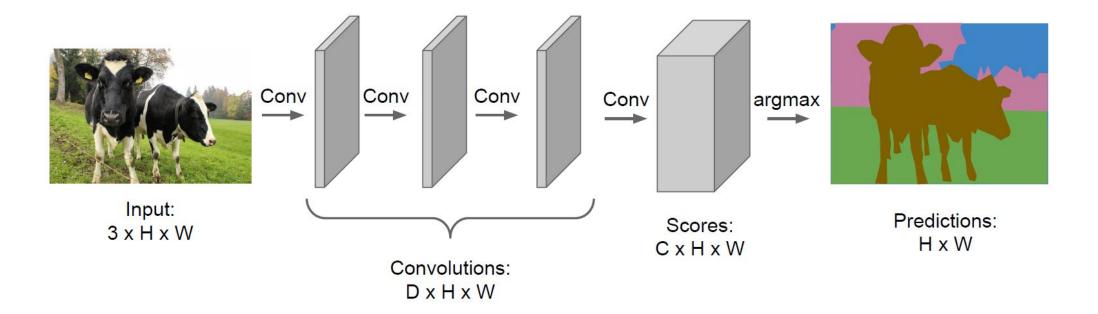
A stack of conv layers to make predictions all at once



A stack of conv layers to make predictions all at once

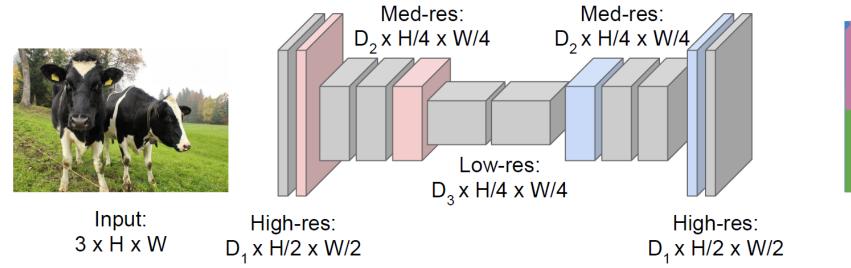


A stack of conv layers to make predictions all at once

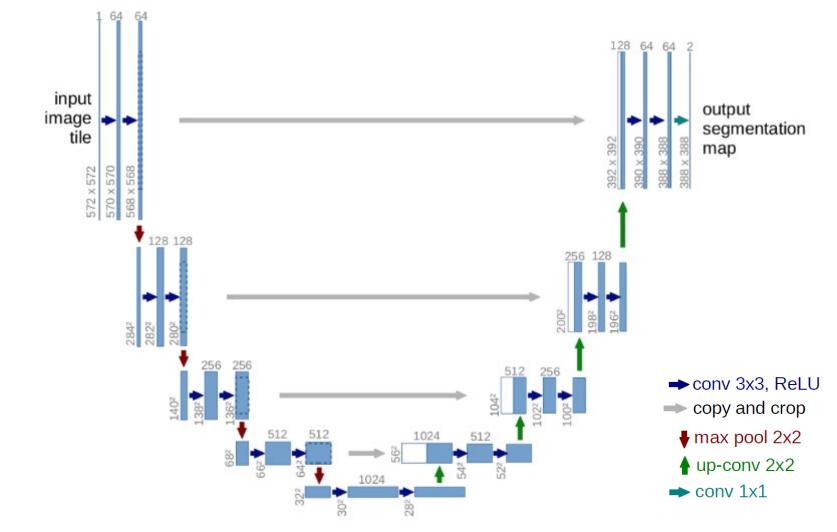


Convolutions at original image resolutions could be very expensive

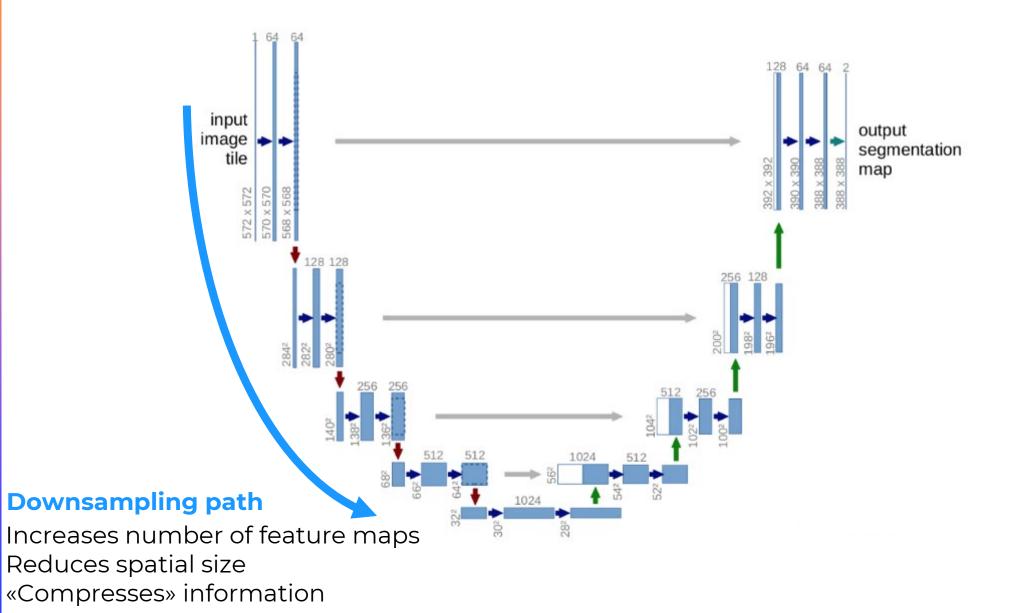
A stack of conv layers, with **downsampling** and **upsampling**, to make predictions all at once

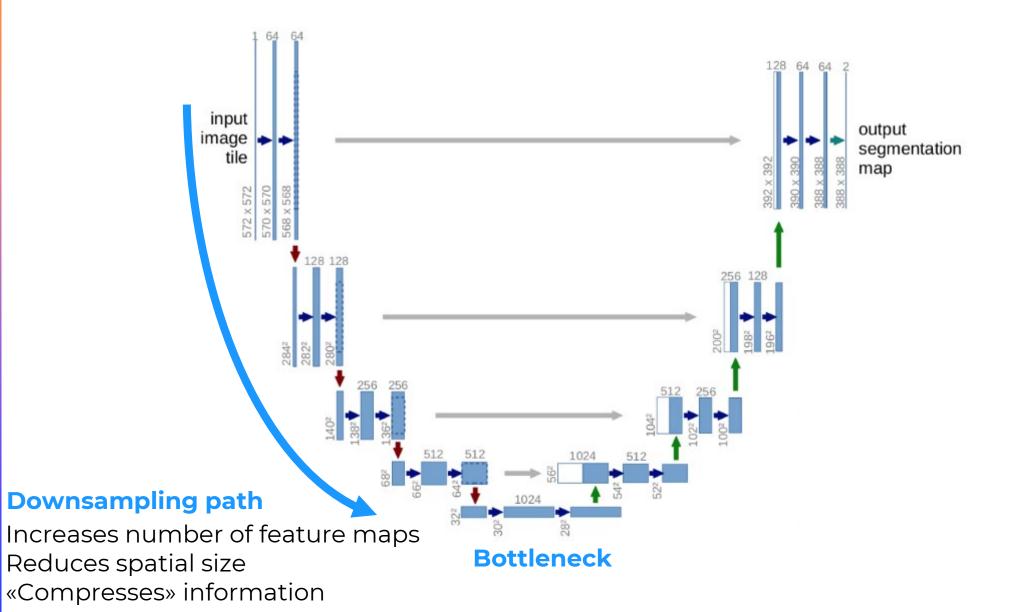


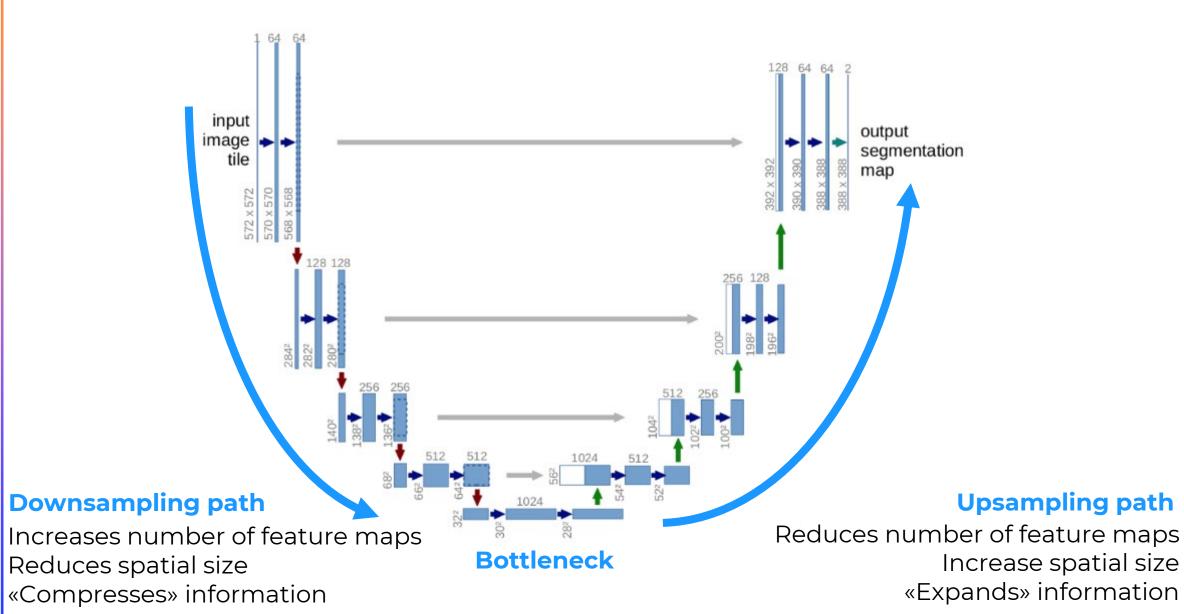
Predictions: H x W

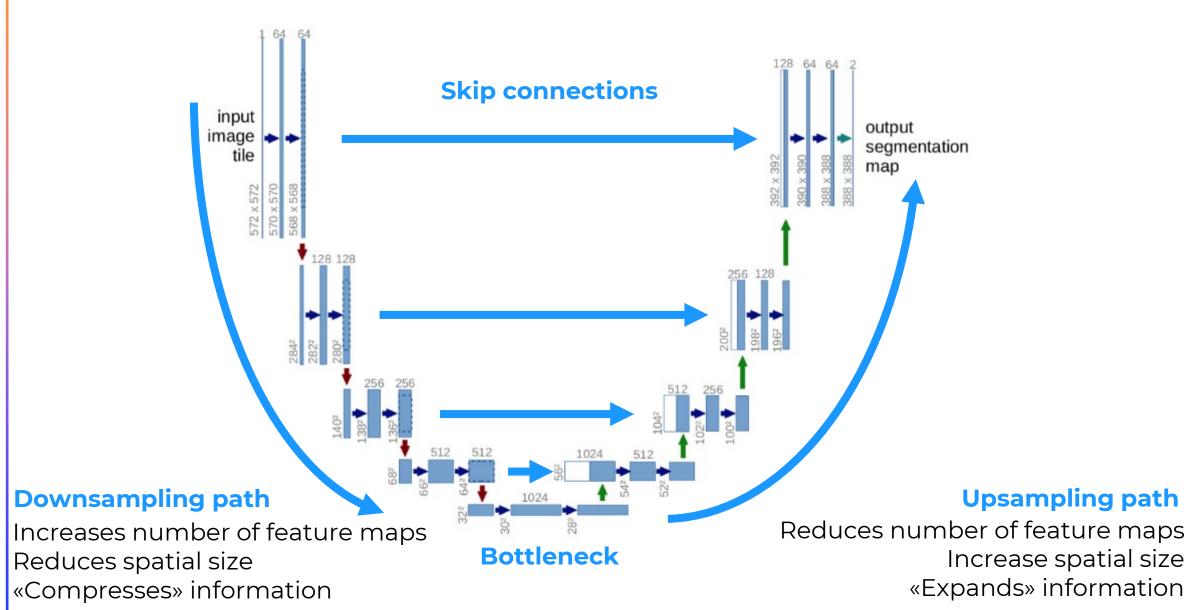


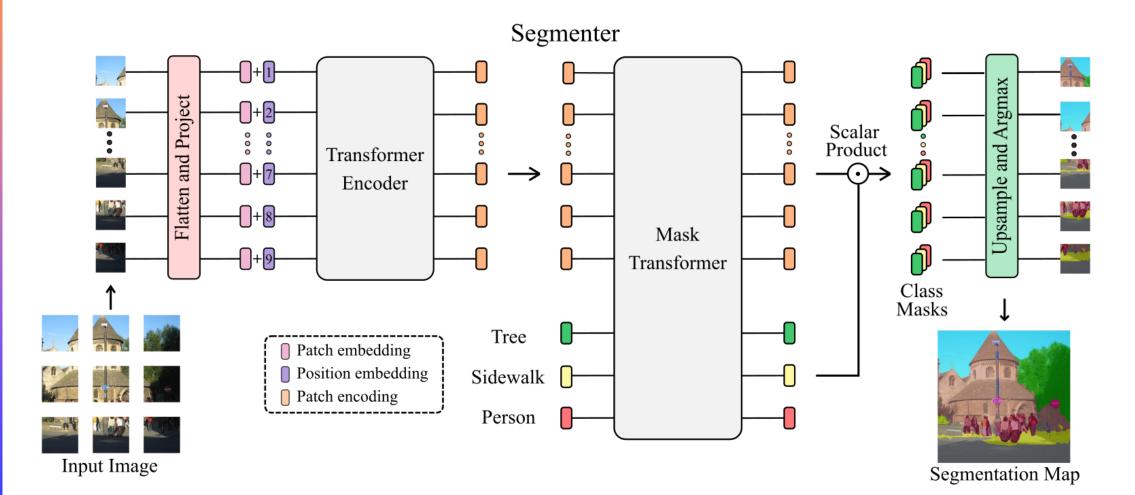
Ronneberger et al. "U-net: Convolutional networks for biomedical image segmentation." MICCAI2015. [Paper]











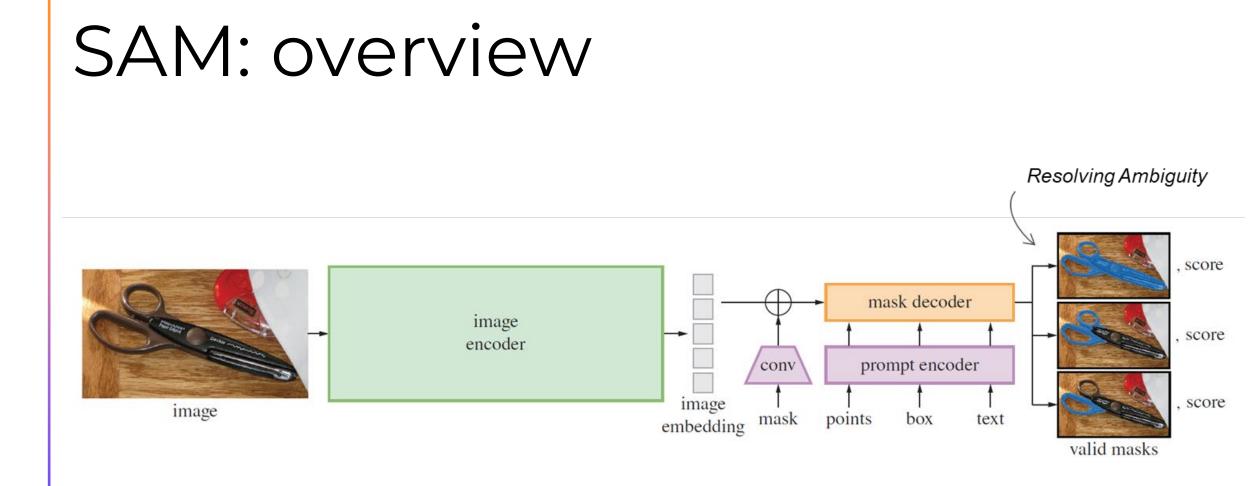
Strudel et al. "Segmenter: Transformer for semantic segmentation." ICCV2021. [Paper][GitHub]

Strudel et al. "Segmenter: Transformer for semantic segmentation." ICCV2021. [<u>Paper][GitHub]</u>

Segment Anything Model (SAM)

Kirillov et al. "Segment anything". ICCV2023. [Paper][GitHub]

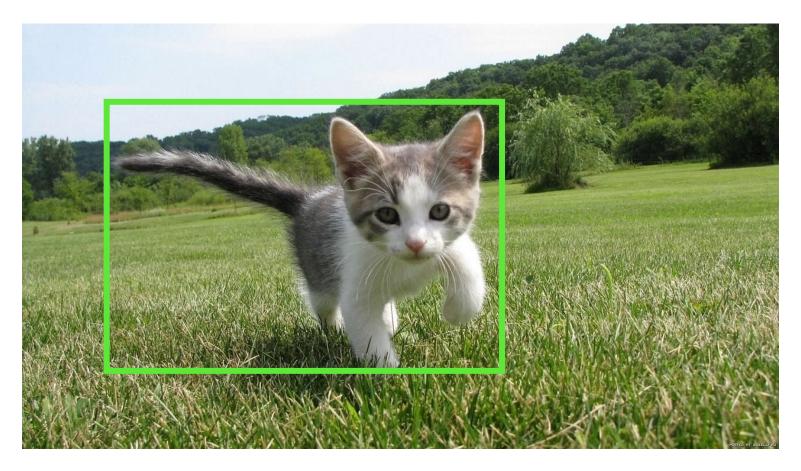
Image by Meta AI



Kirillov et al. "Segment anything". ICCV2023. [Paper][GitHub]

Kirillov et al. "Segment anything". ICCV2023. [Paper][GitHub]

Localization

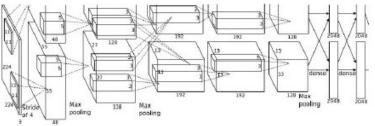


Predict coordinates of a bounding box (x, y, w, h) that *contains* an entity.

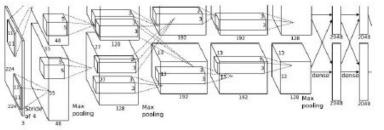
Object detection

DOG, DOG, CAT

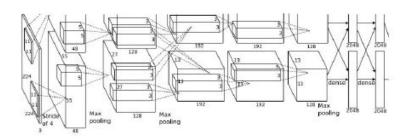
Object detection as a Regression problem



CAT: (x, y, w, h)



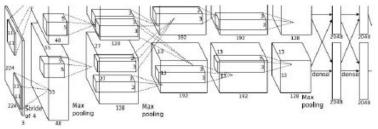
DOG: (x, y, w, h) DOG: (x, y, w, h) CAT: (x, y, w, h)



DUCK: (x, y, w, h) DUCK: (x, y, w, h)

. . . .

Object detection as a Regression problem



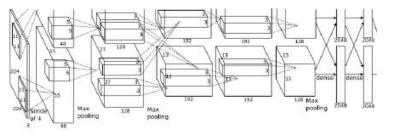
CAT: (x, y, w, h)

4 numbers

DOG: (x, y, w, h) DOG: (x, y, w, h) CAT: (x, y, w, h)

. . . .

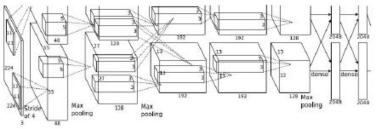
12 numbers



DUCK: (x, y, w, h) DUCK: (x, y, w, h)

many numbers

Object detection as a Regression problem

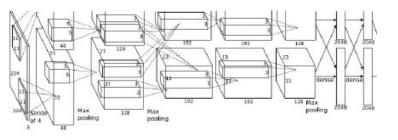


CAT: (x, y, w, h)

4 numbers

DOG: (x, y, w, h) DOG: (x, y, w, h) CAT: (x, y, w, h)

12 numbers

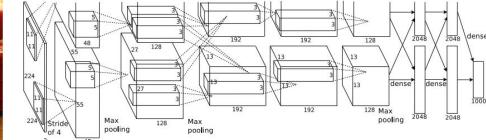


DUCK: (x, y, w, h) DUCK: (x, y, w, h)

many numbers

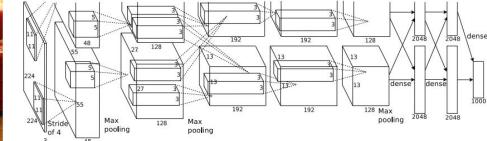
Each image can contain different number of entities

Object detection as Classification

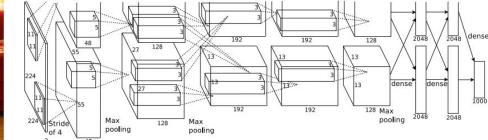


DOG? NO CAT? NO Background? YES

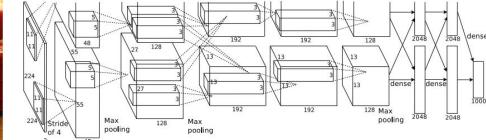
Object detection as Classification



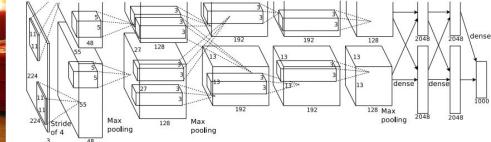
DOG? YES CAT? NO Background? NO



DOG? YES CAT? NO Background? NO

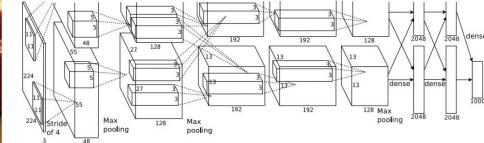


DOG? NO CAT? YES Background? NO



DOG? NO CAT? YES Background? NO

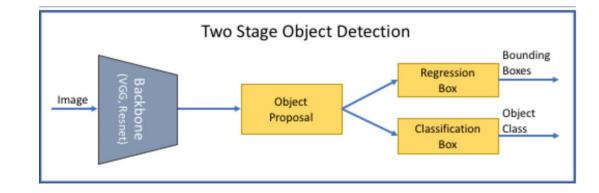
SLIDING WINDOW

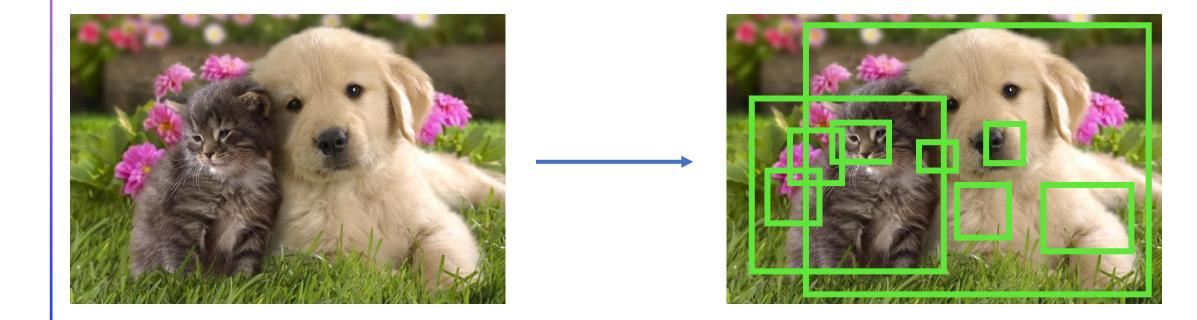


DOG? NO CAT? YES Background? NO

SLIDING WINDOW Need to apply CNN to huge number of locations and scales

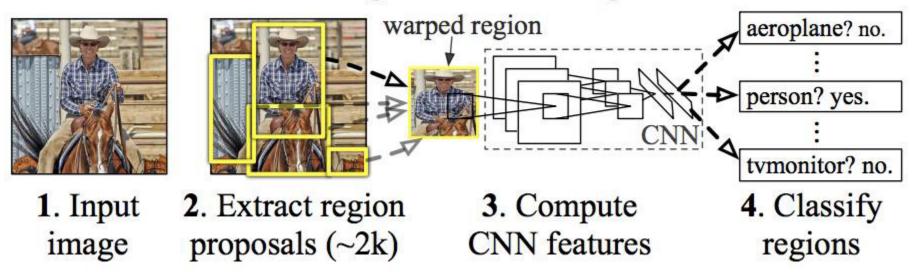
Region Proposals





Object detection: The RCNN Family

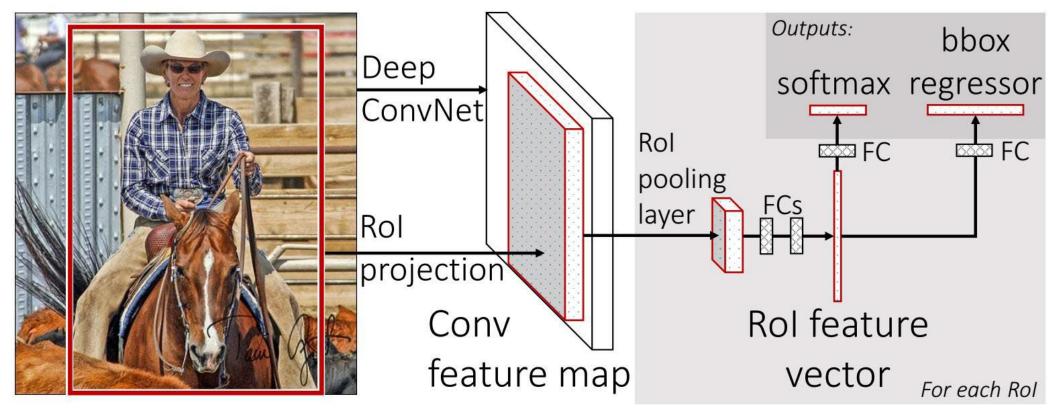
R-CNN: Regions with CNN features



Girshick et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." CVPR2014. [Paper]

Fast R-CNN

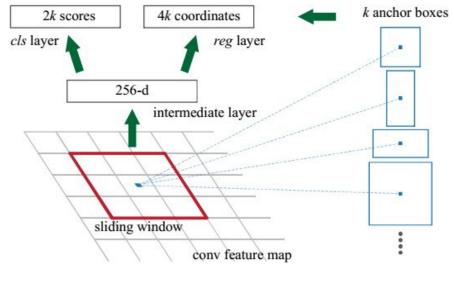
Predictions from sliding windows on feature maps



He et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." *IEEE TPAMI* 2015. [Paper]

Faster R-CNN

Generate also candidate locations



Region Proposal Network

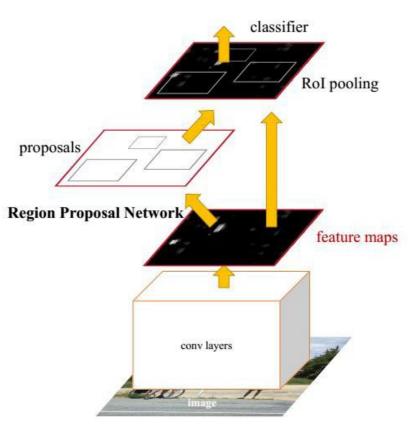
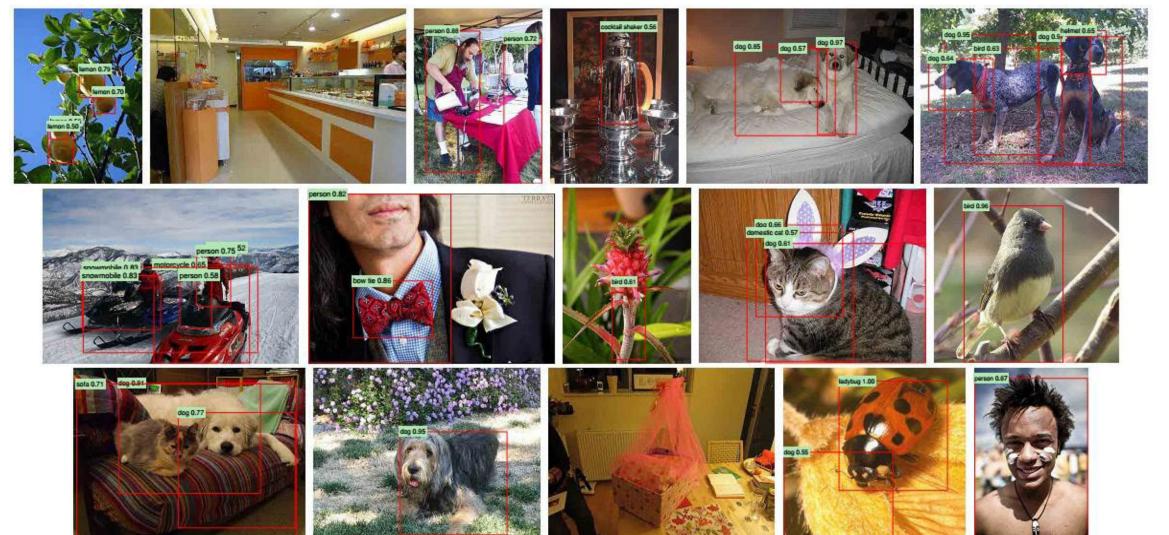


Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

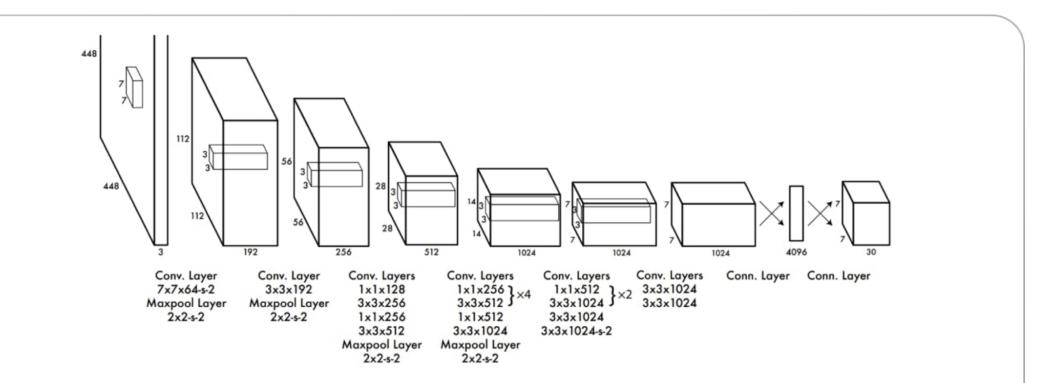
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." *NeurIPS* 2015. [Paper]

Some results



You Only Lock Once: YOLO

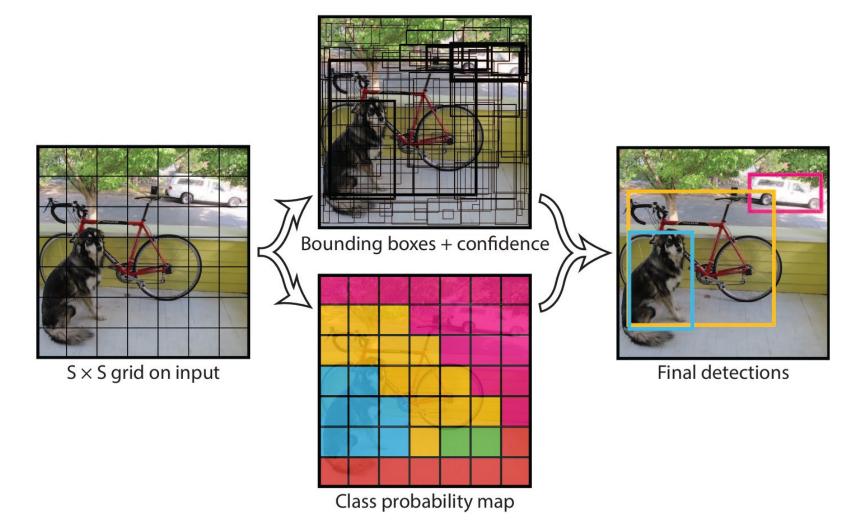
YOLO: from input image to tensor scores with one single convolutional network



The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

Redmon et al. "You only look once: Unified, real-time object detection." CVPR 2016. [Paper]

You Only Lock Once: YOLO

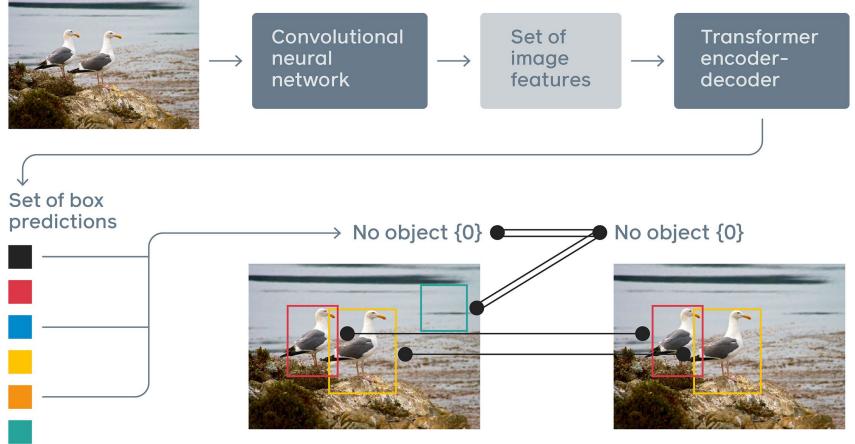


Redmon et al. "You only look once: Unified, real-time object detection." CVPR 2016. [Paper]

You Only Lock Once: YOLO

Redmon et al. "You only look once: Unified, real-time object detection." CVPR 2016. [Paper]

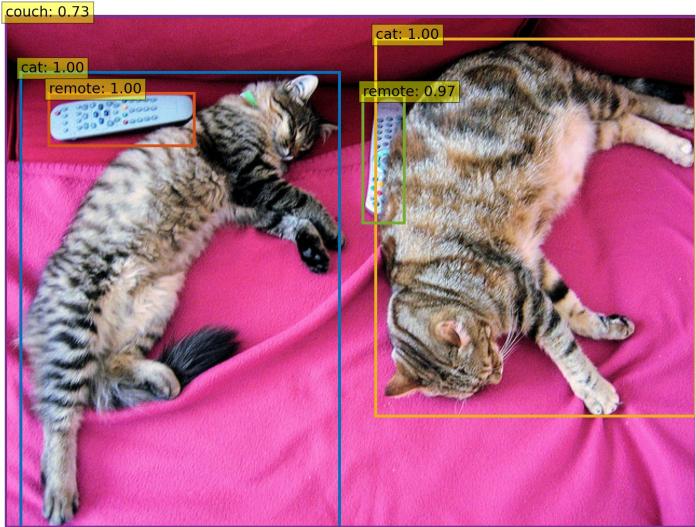
DETR



Bipartite matching loss

Carion et al. "End-to-end object detection with transformers." ECCV 2020. [Paper][GitHub]

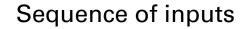
DETR



Carion et al. "End-to-end object detection with transformers." ECCV 2020. [Paper][GitHub]

TRANSFORMERS

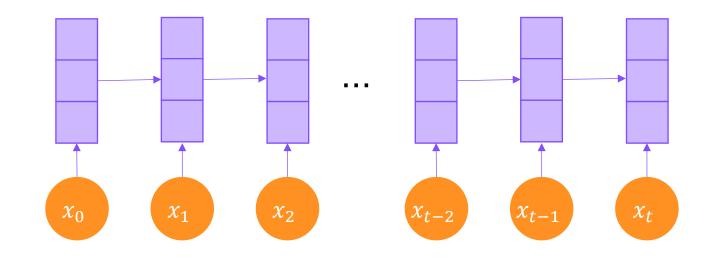
RNNs use recurrence to model sequence dependencies



RNNs use recurrence to model sequence dependencies

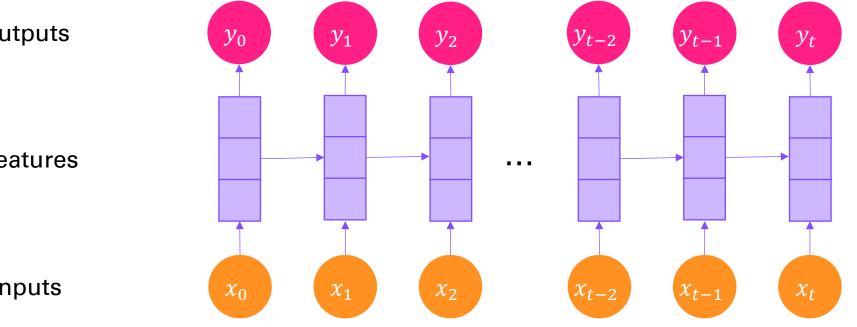
Sequence of features

Sequence of inputs



RNNs use recurrence to model sequence dependencies

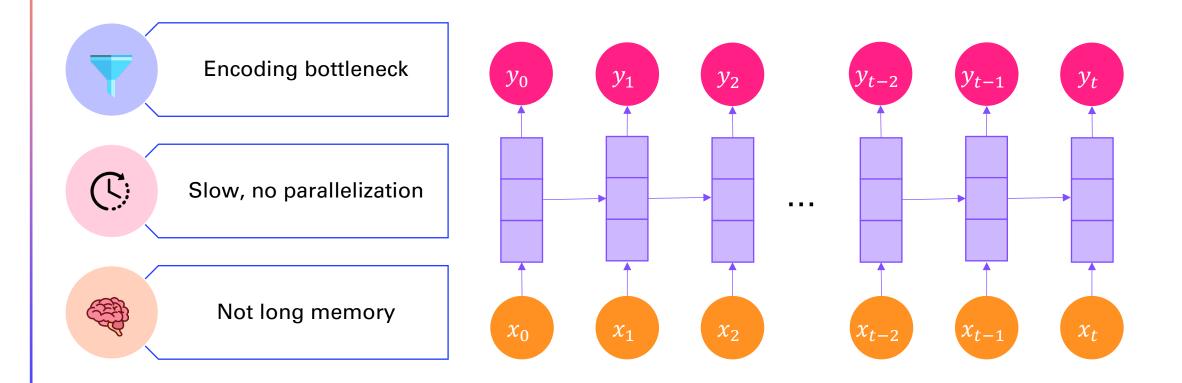
t

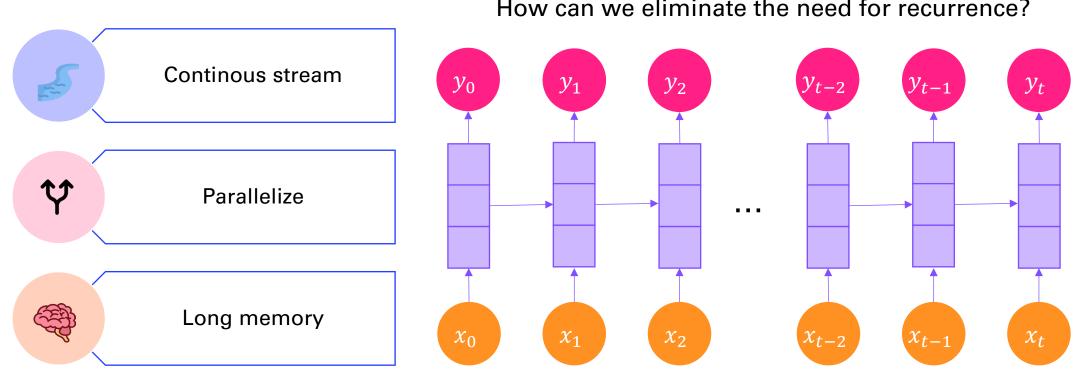


Sequence of outputs

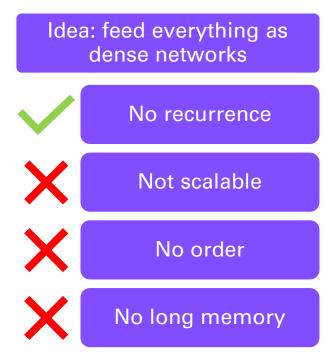
Sequence of features

Sequence of inputs

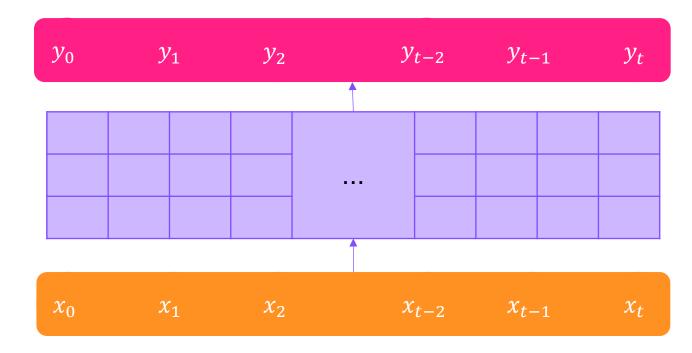




How can we eliminate the need for recurrence?



How can we eliminate the need for recurrence?



TRANSFORMERS ARCHITECTURE

+

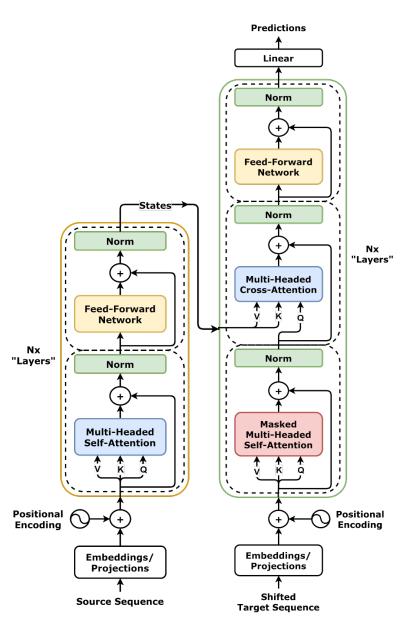
0

+

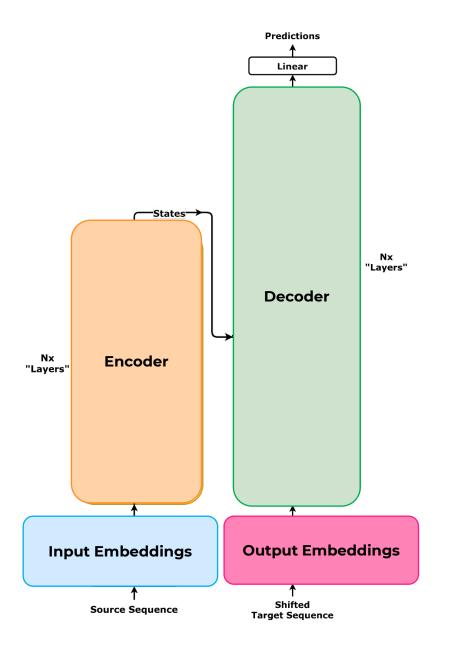
0

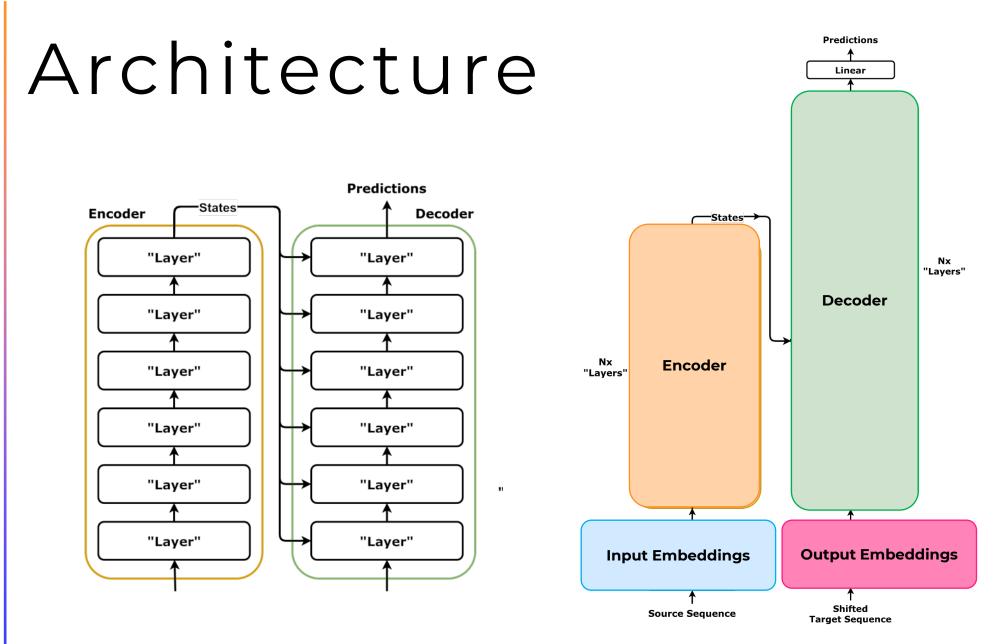
The Encoder and Decoder stacks

Architecture

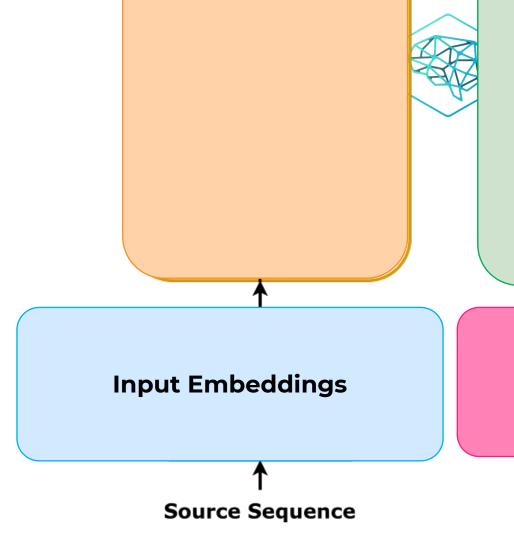


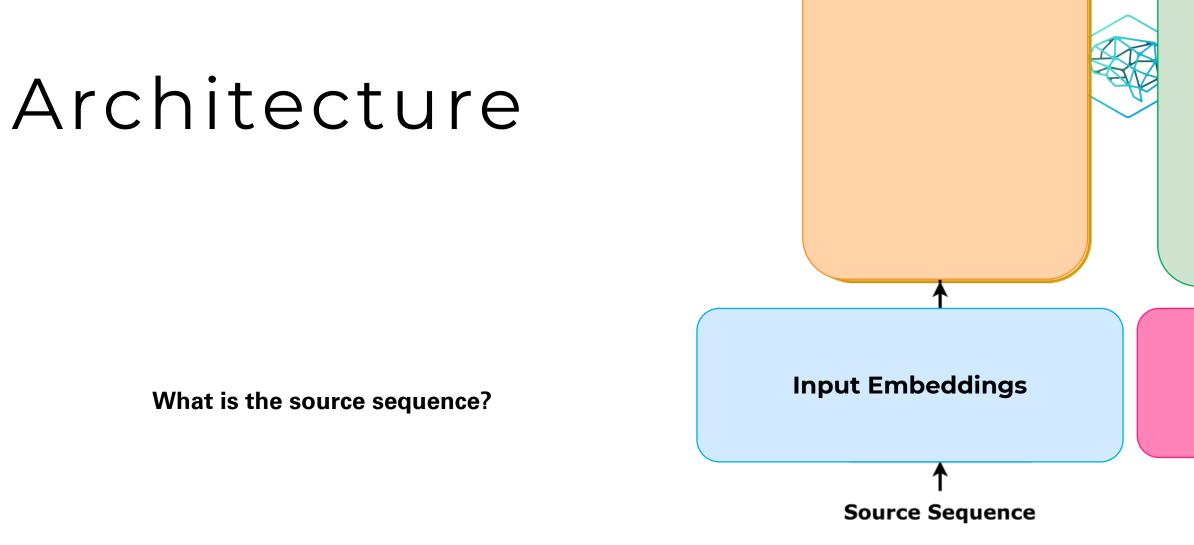
Architecture

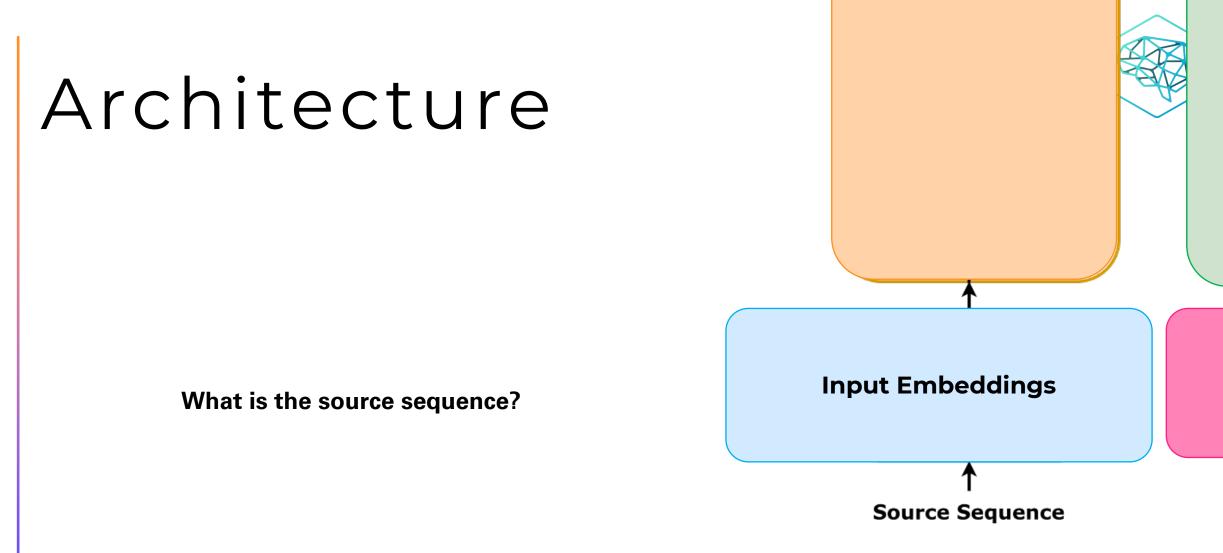




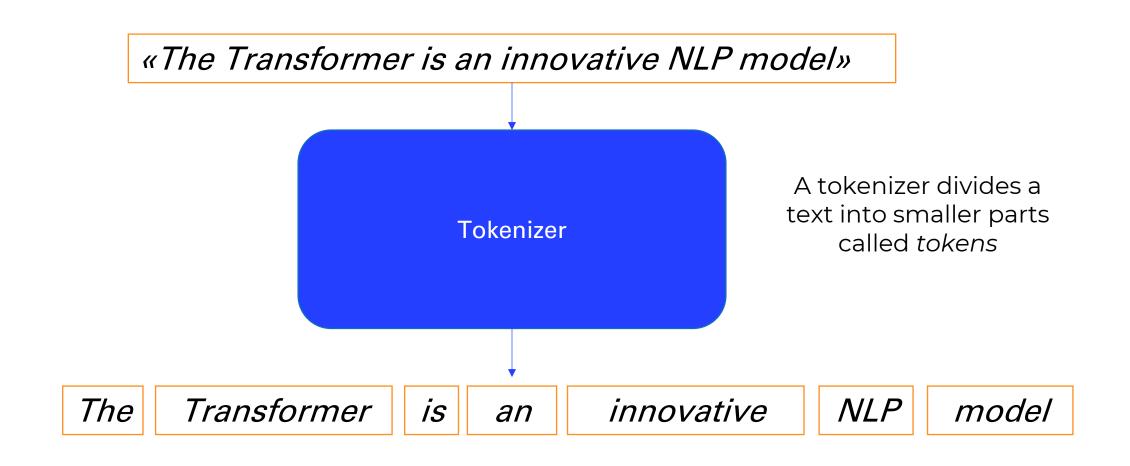
Architecture

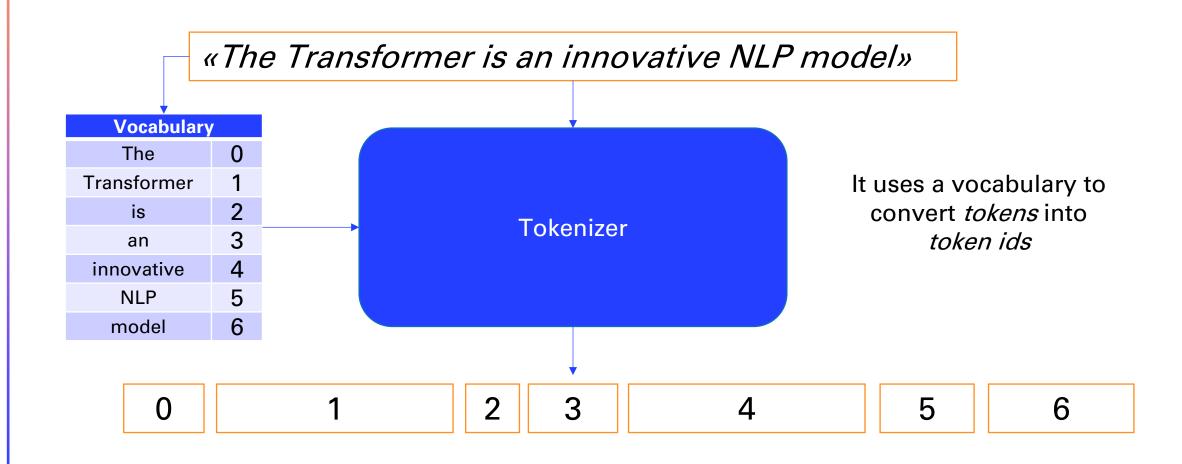


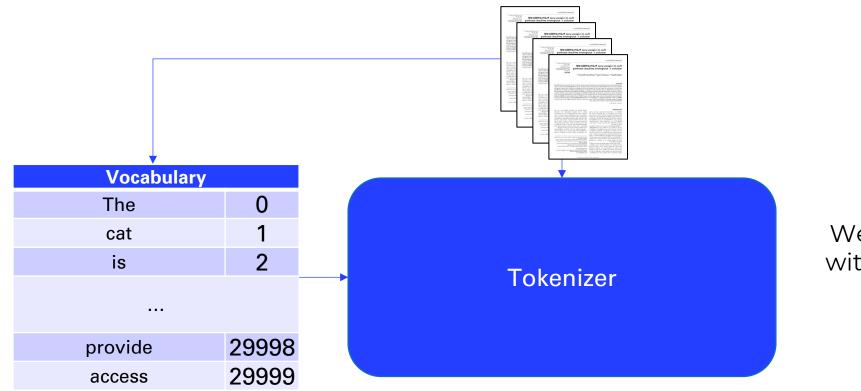




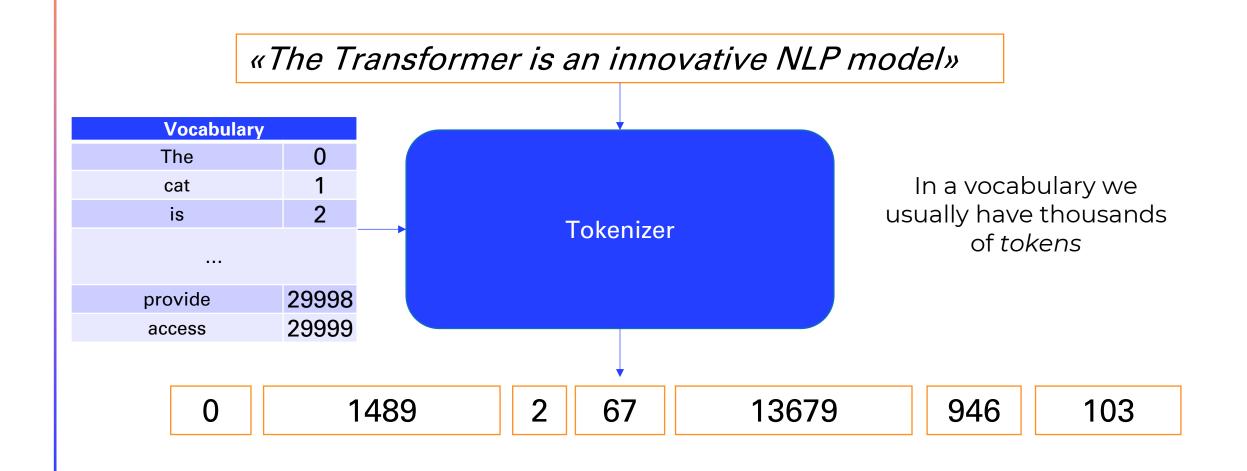
«The Transformer is an innovative NLP model»

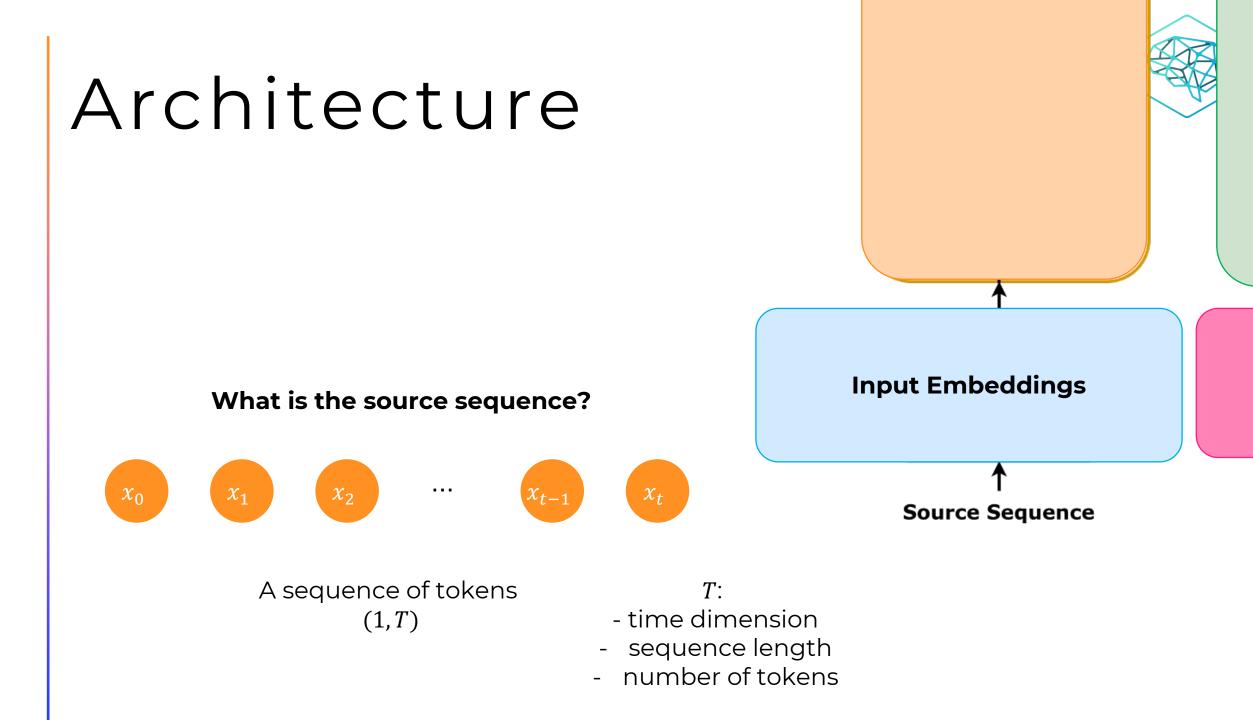




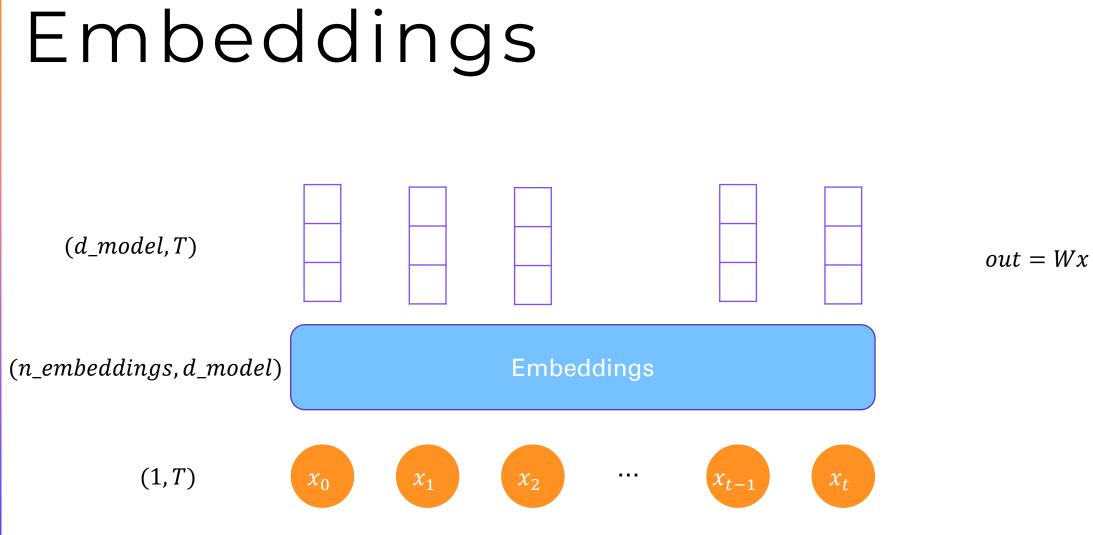


We don't train a model with a single sentence... ...we use *corpora*



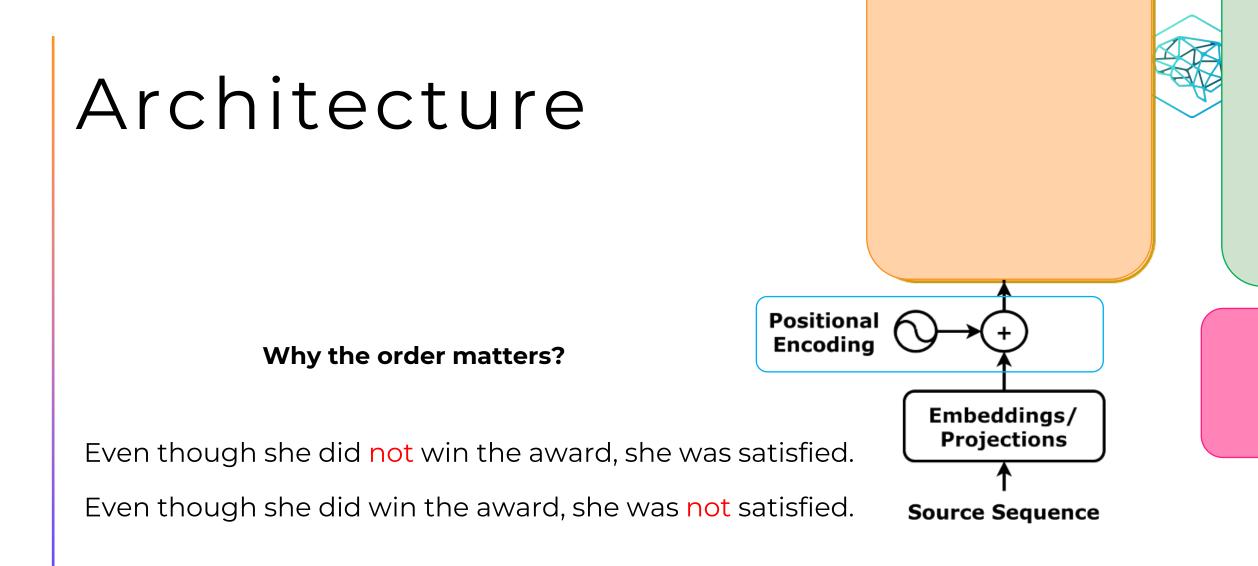


Architecture Positional *F* Encoding Embeddings/ Projections **Source Sequence**

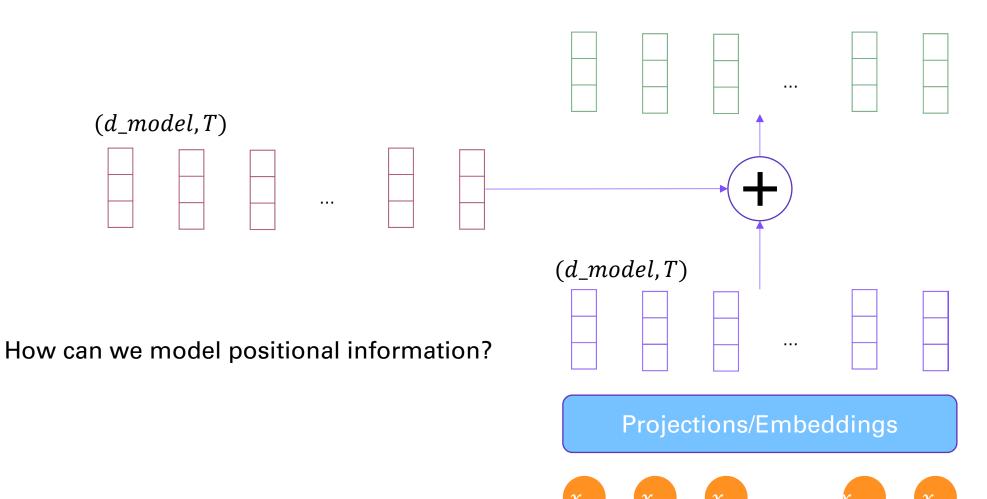


Architecture Positional *F* Encoding Embeddings/ Projections **Source Sequence**

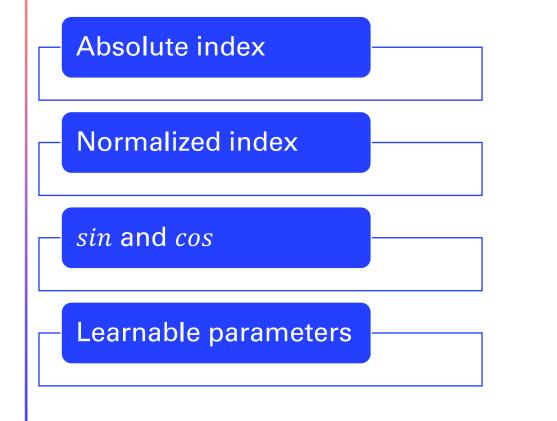
Architecture Positional *P* Encoding We have no recurrence Embeddings/ Transformer has no idea of the order of tokens Projections **Source Sequence**

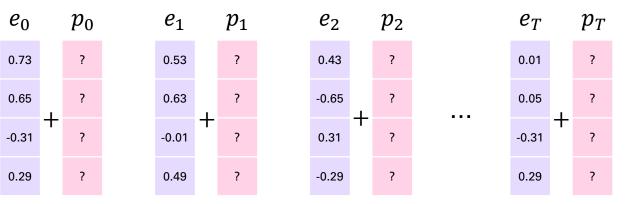


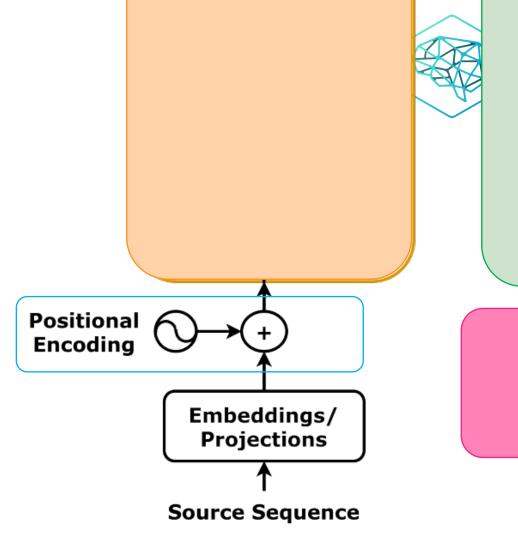
Positional Encoding



How can we model positional information?





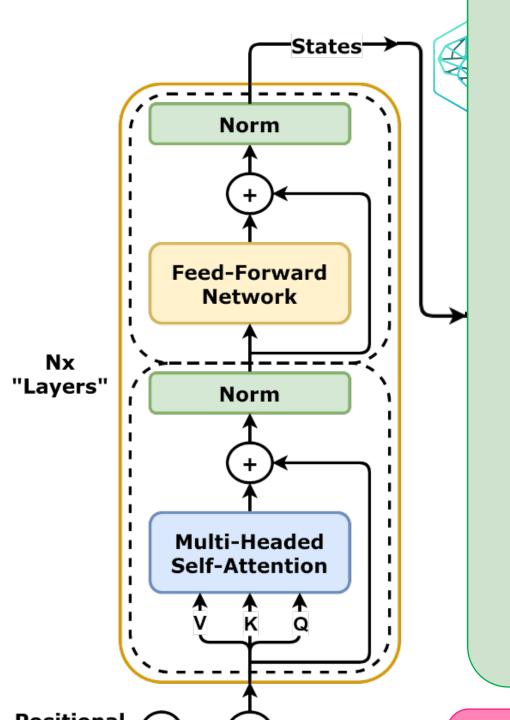


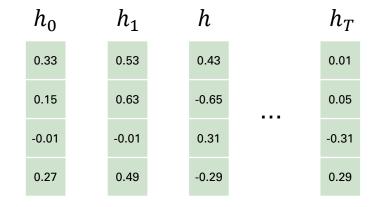
Nx "Layers"

Desitional C

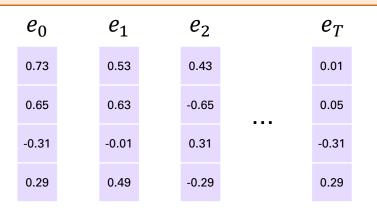
Encoder

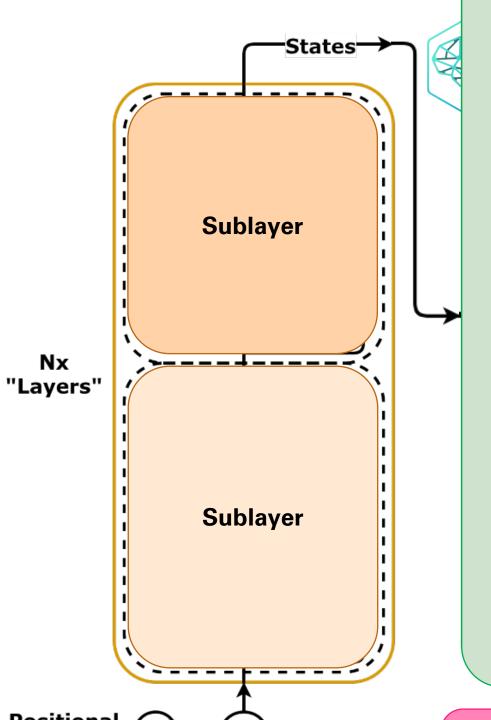
-States-

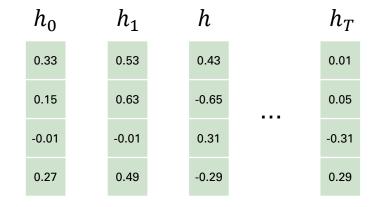




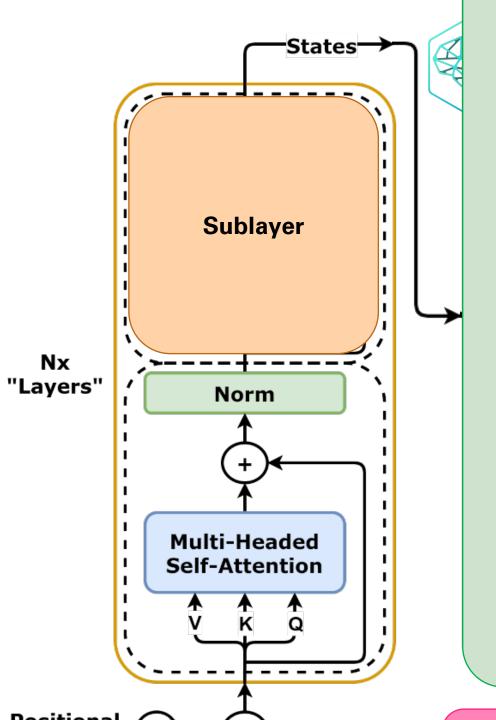
Sublayer

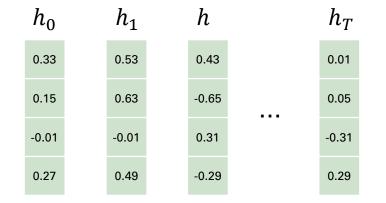




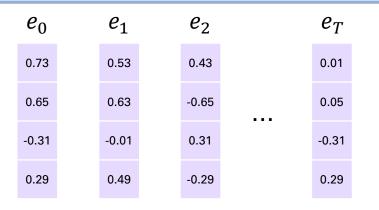


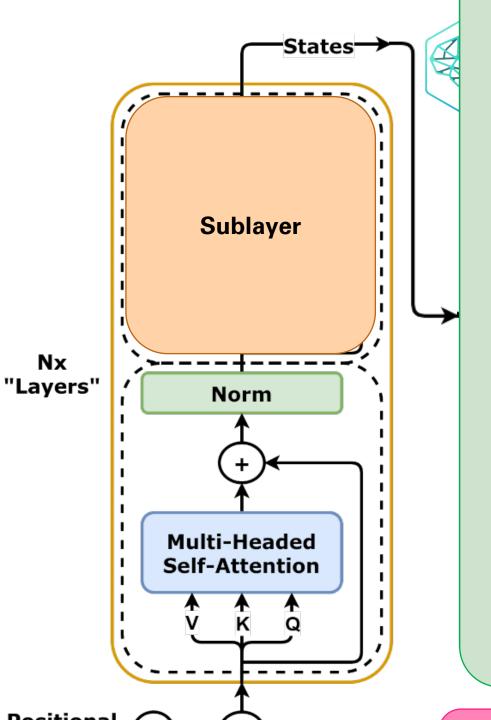
Sublayer





Multi-Headed Self-Attention



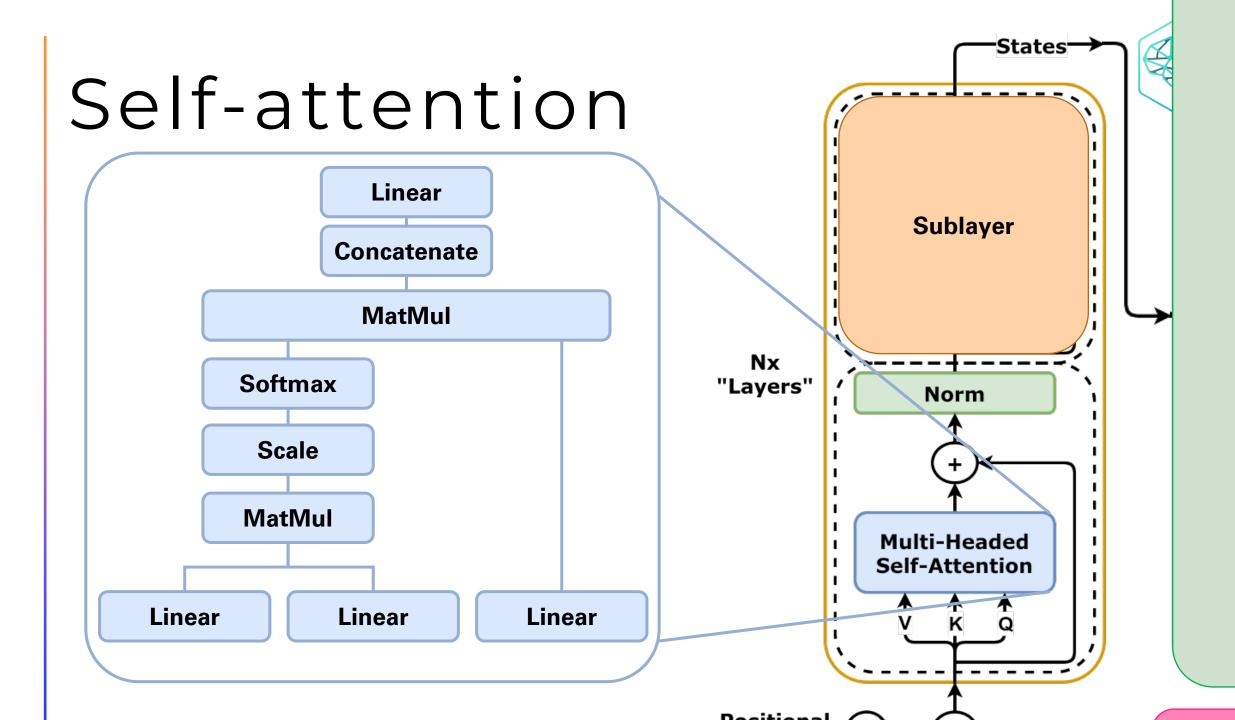


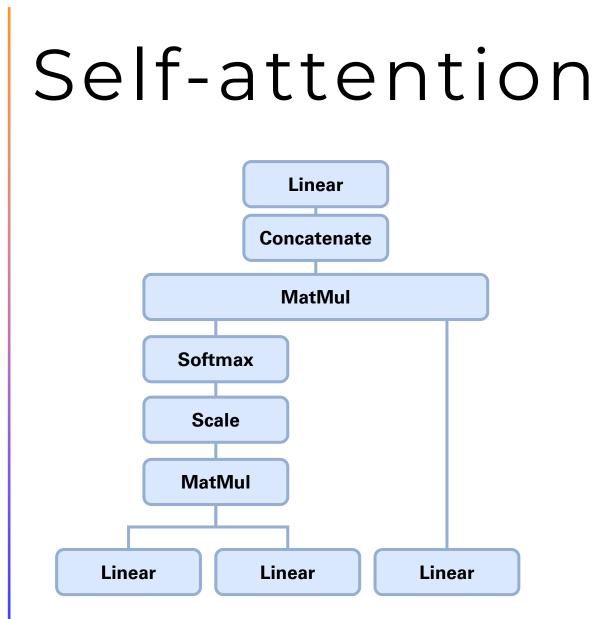
He went to the bank and learned of his empty account, after which he went to the river bank and cried.

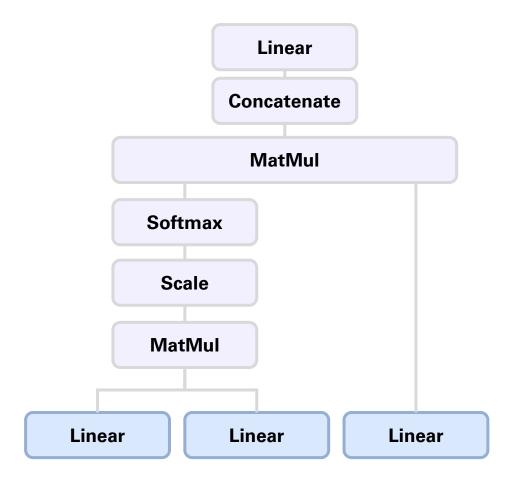
He went to the bank and learned of his empty account, after which he went to the river bank and cried.

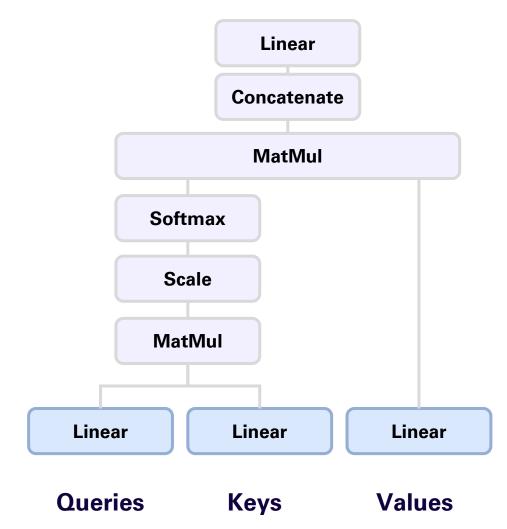
He went to the bank and learned of his empty account, after which he went to the river bank and cried.

The meaning of every word can be regarded as the sum of the words it pays the most attention to



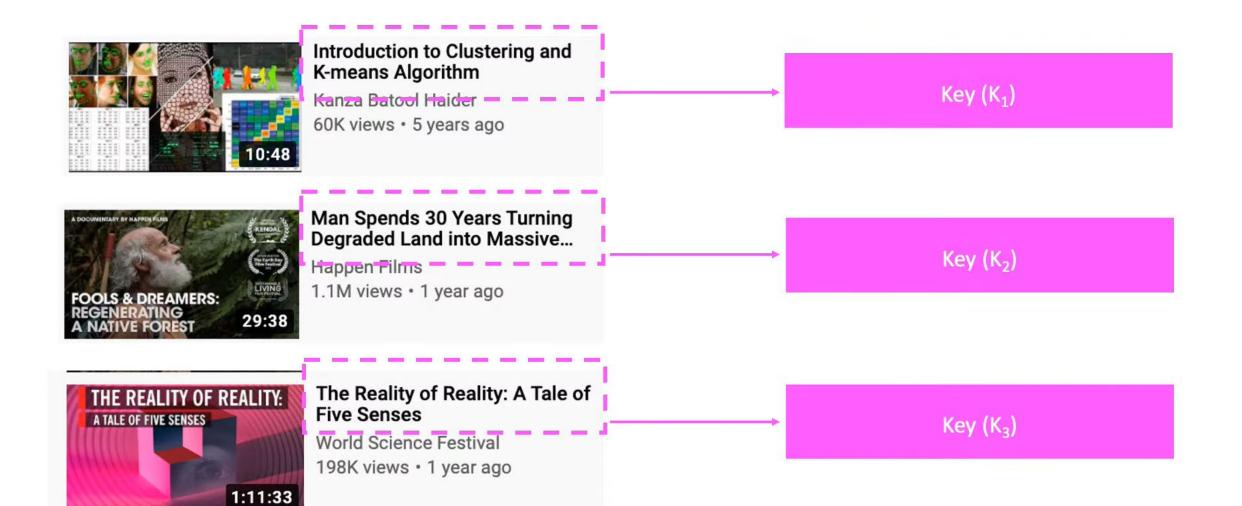






k-means clustering

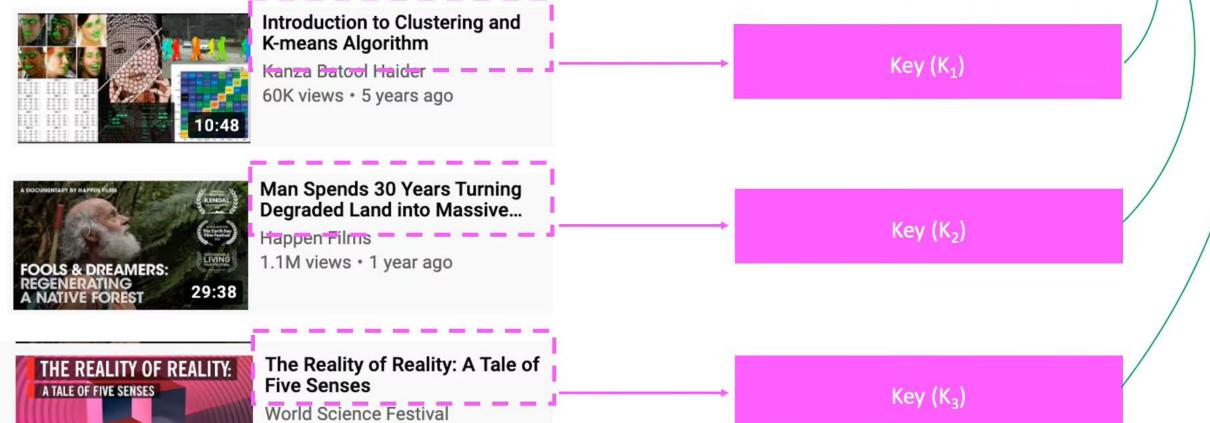
Query (Q)



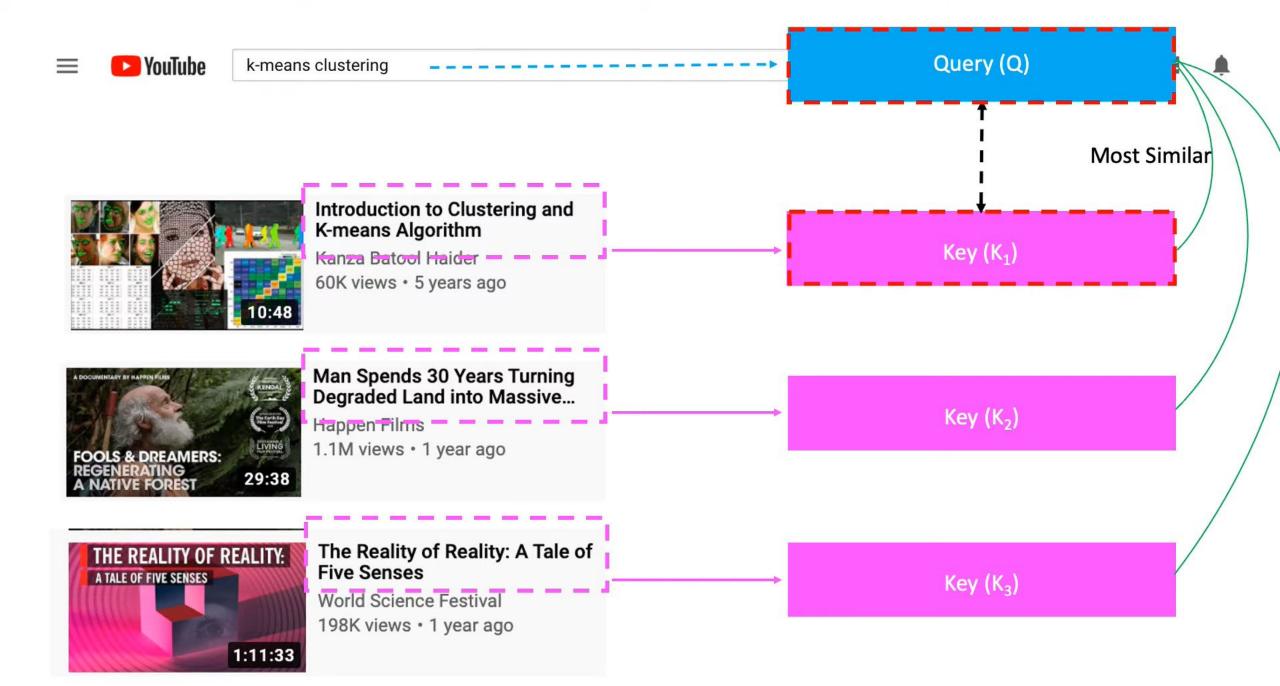
1:11:33

Query (Q)

Similarity



198K views • 1 year ago



Introduction to Clustering and K-means Algorithm

Kanza Batool Haider 60K views • 5 years ago Key (K₁)

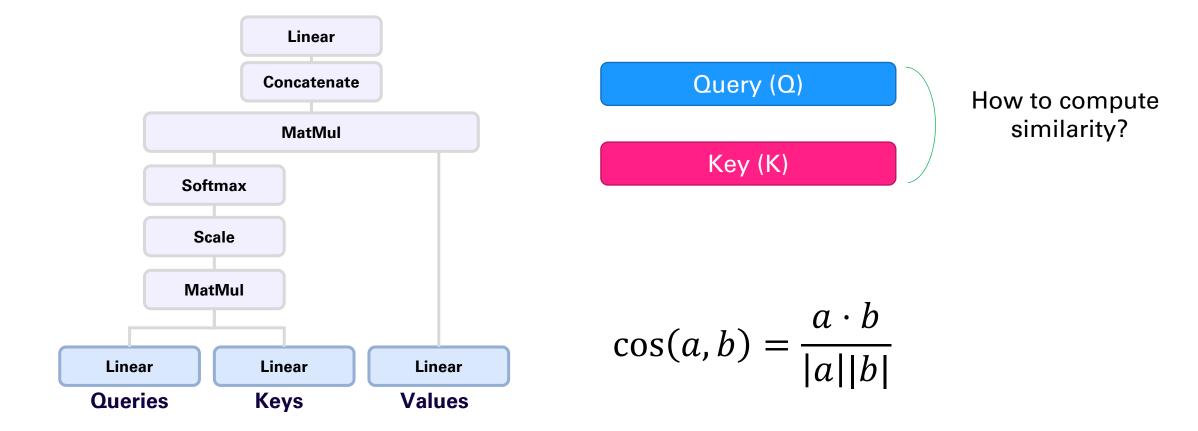
Man Spends 30 Years Turning Degraded Land into Massive...

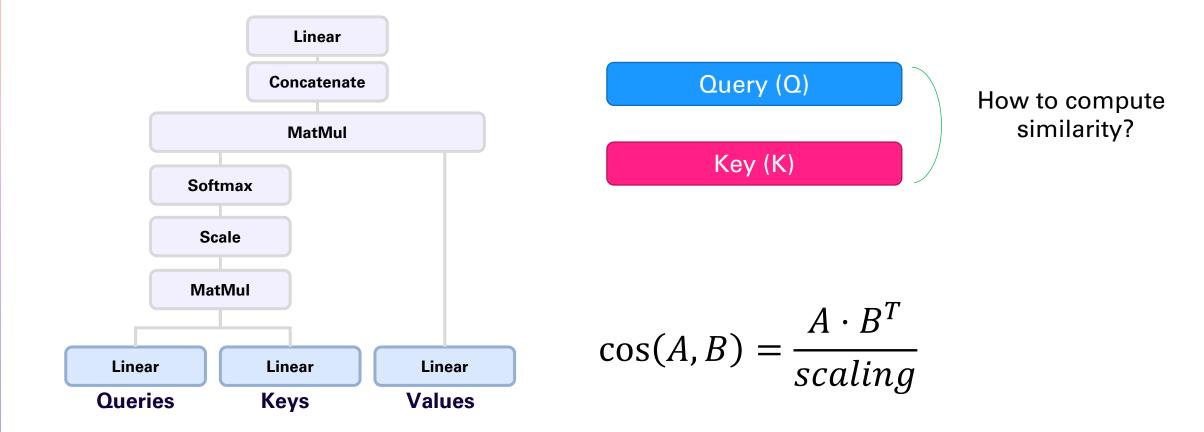
Happen Films

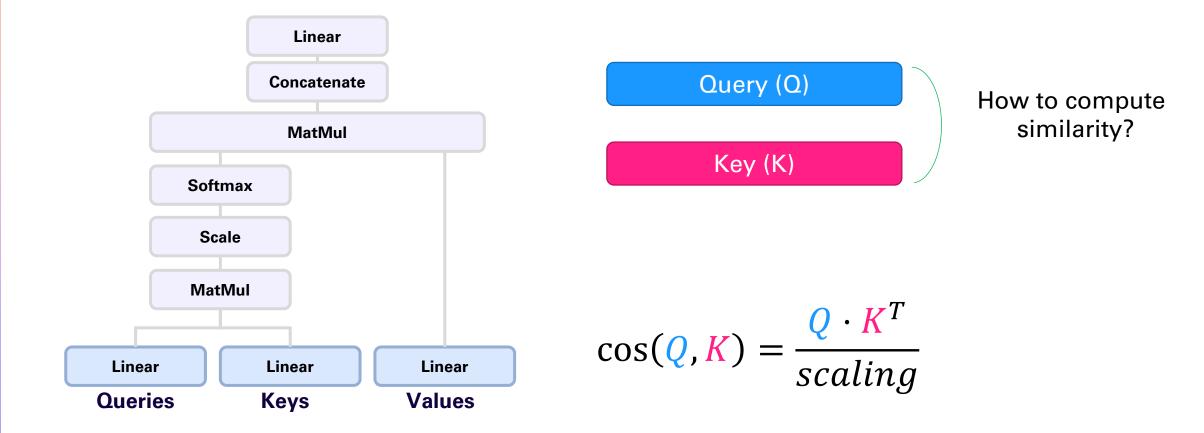
1.1M views • 1 year ago

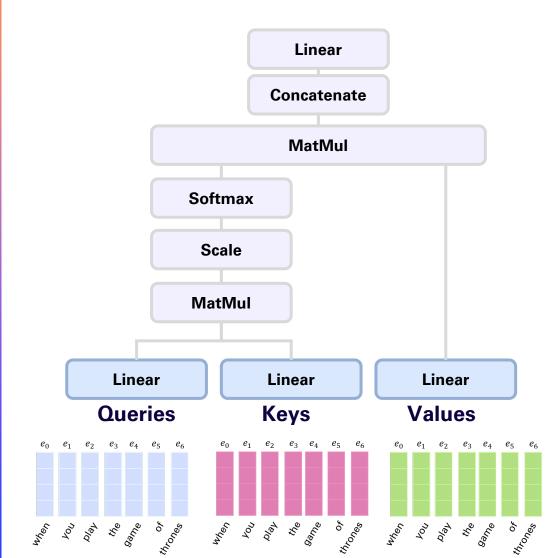
The Reality of Reality: A Tale of Five Senses

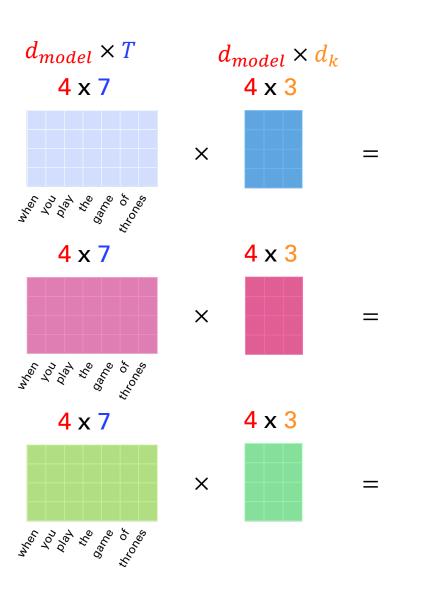
World Science Festival 198K views • 1 year ago Value (V₁)

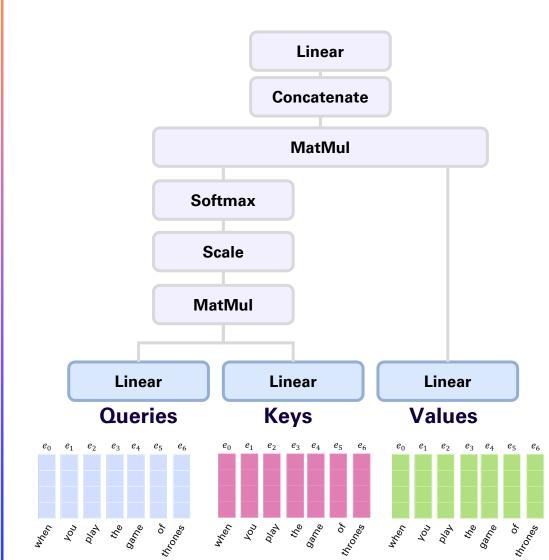


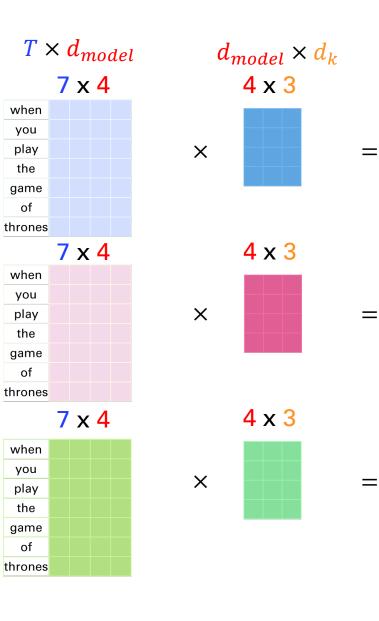


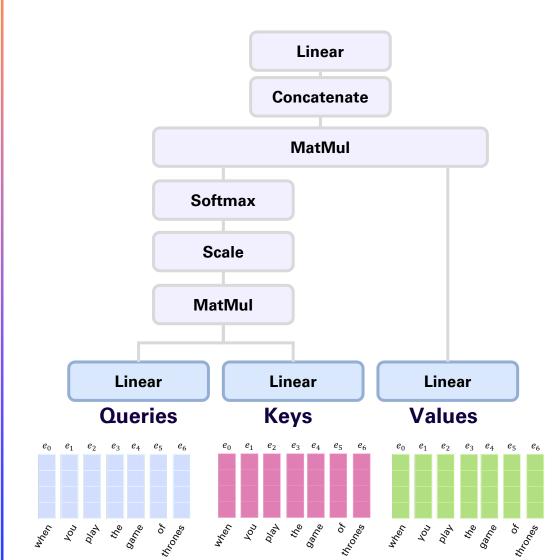


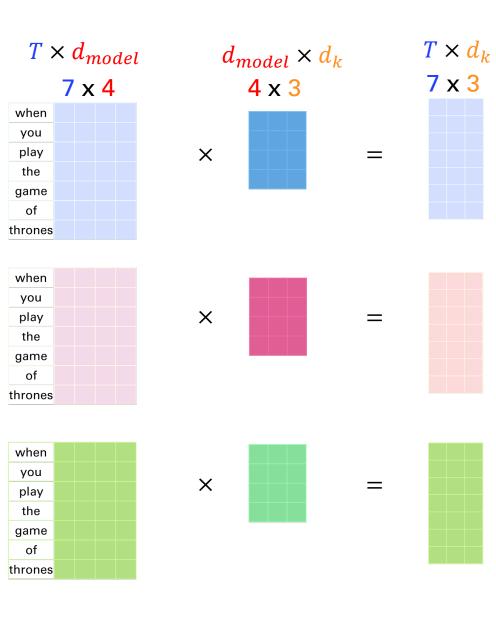








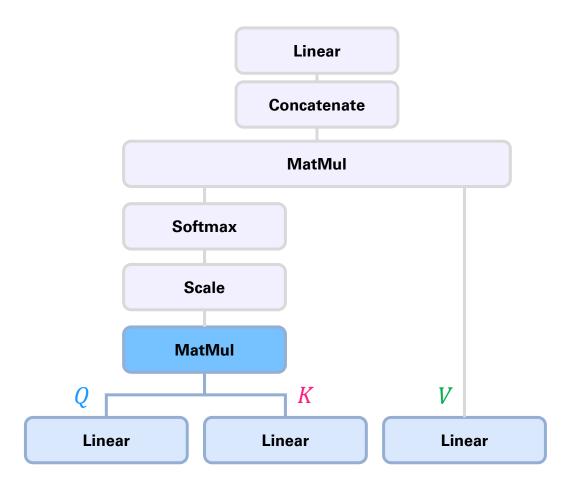




Q

K

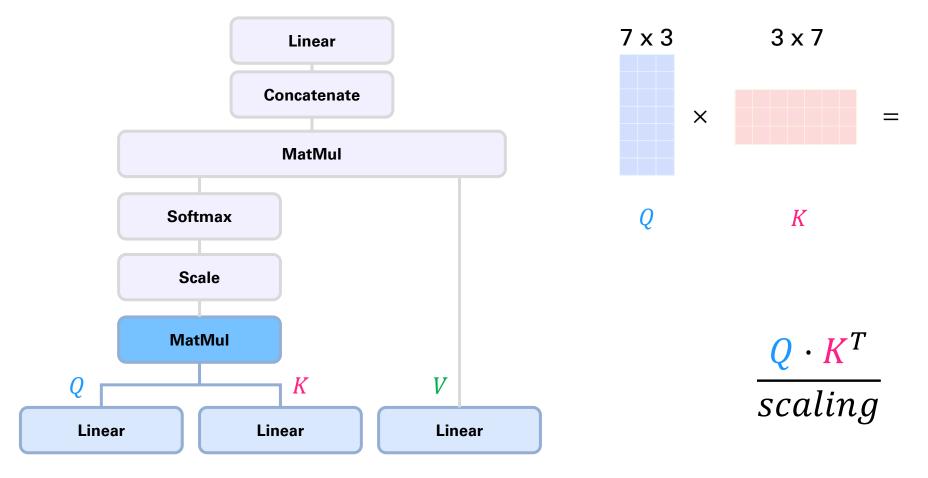
V

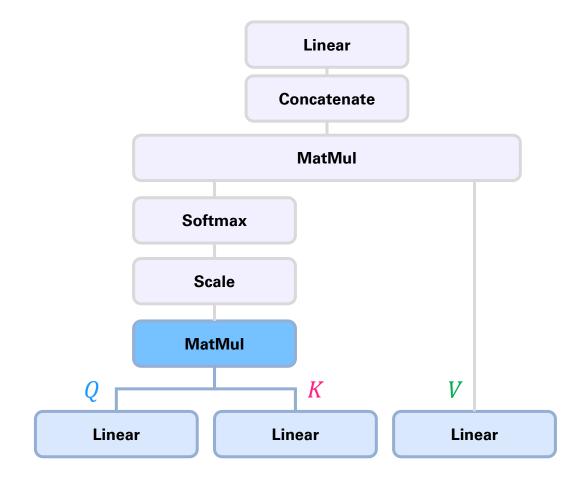


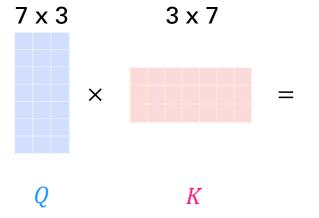
Q

K

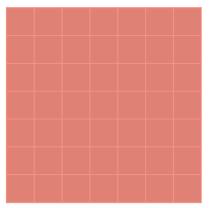
Self-attention



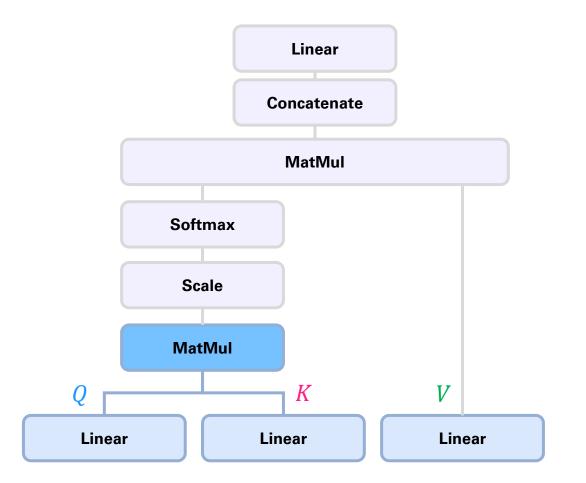




7 x 7



 $\frac{\boldsymbol{Q} \cdot \boldsymbol{K}^T}{scaling}$



7 x 7

When	you	play	the	game	of	thrones
89	20	41	10	55	78	59
90	98	81	22	87	15	32
29	81	95	10	90	30	92
10	22	67	12	88	40	89
22	70	90	56	98	44	80
10	15	30	40	44	44	59
59	72	92	90	13	59	99

When

you

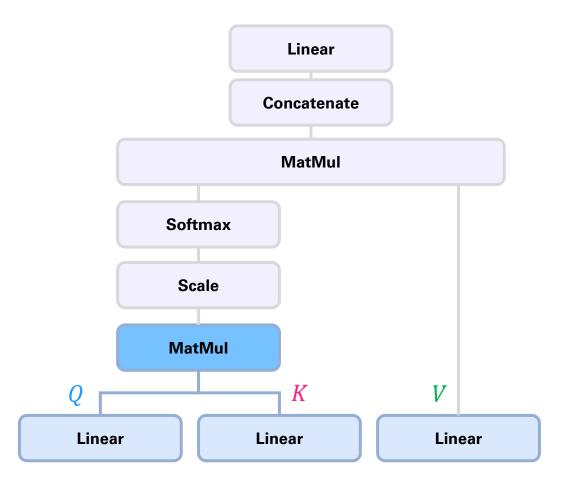
play

the

game

of

thrones



7 x 7

When	you	play	the	game	of	thrones
89	20	41	10	55	78	59
90	98	81	22	87	15	32
29	81	95	10	90	30	92
10	22	67	12	88	40	89
22	70	90	56	98	44	80
10	15	30	40	44	44	59
59	72	92	90	13	59	99

When

you

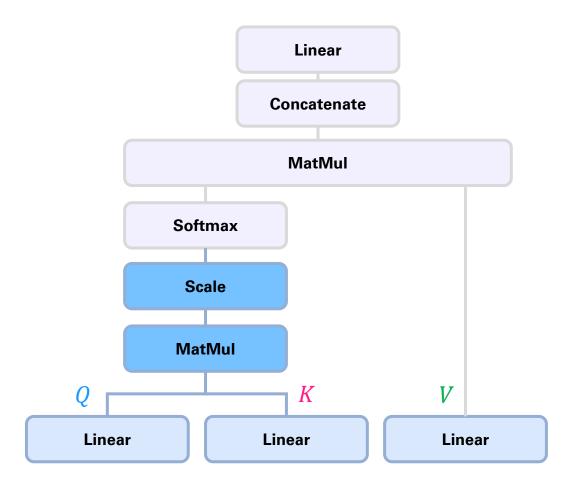
play

the

game

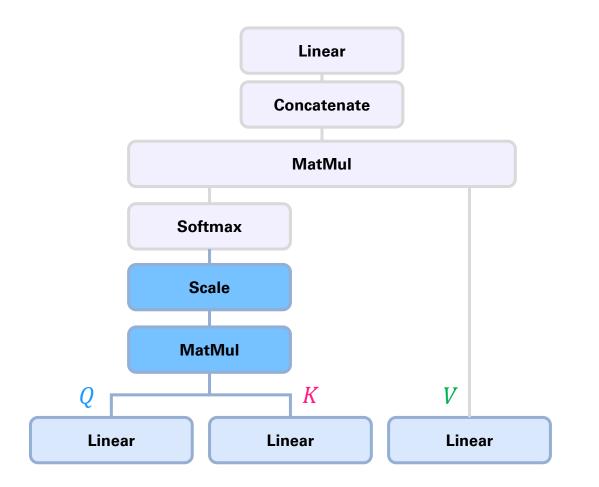
of

thrones



7 x 7

	When	you	play	the	game	of	thrones
When	89	20	41	10	55	78	59
you	90	98	81	22	87	15	32
play	29	81	95	10	90	30	92
the	10	22	67	12	88	40	89
game	22	70	90	56	98	44	80
of	10	15	30	40	44	44	59
thrones	59	72	92	90	13	59	99



7 x 7

	When	you	play	the	game	of	thrones
When	33.6	7.6	15.5	3.8	20.8	3.8	22.3
you	7.6	34.0	30.6	8.3	26.5	5.7	27.2
play	15.5	30.6	35.9	3.8	34.0	11.3	34.8
the	3.8	8.3	3.8	34.8	33.3	15.1	33.6
game	20.8	26.5	34.0	33.3	37.0	16.6	35.9
of	3.8	5.7	11.3	15.1	16.6	32.1	22.3
thrones	22.3	27.2	34.8	34.0	35.9	22.3	37.4

Linear Concatenate MatMul Softmax Softmax Scale MatMul Q K VLinear Linear Linear

7 x 7

When

you

play

the

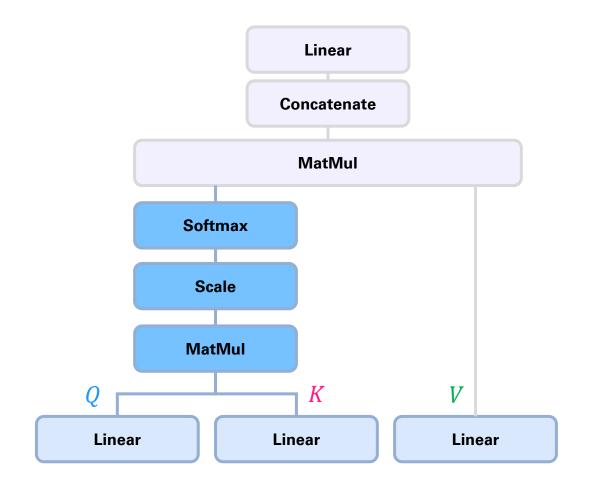
game

of

thrones

When	you	play	the	game	of	thrones
33.6	7.6	15.5	3.8	20.8	3.8	22.3
7.6	34.0	30.6	8.3	26.5	5.7	27.2
15.5	30.6	35.9	3.8	34.0	11.3	34.8
3.8	8.3	3.8	34.8	33.3	15.1	33.6
20.8	26.5	34.0	33.3	37.0	16.6	35.9
3.8	5.7	11.3	15.1	16.6	32.1	22.3
22.3	27.2	34.8	34.0	35.9	22.3	37.4

Self-attention



7 x 7

When	you	play	the	game	of	thrones
1.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.97	0.03	0.00	0.00	0.00	0.00
0.00	0.00	0.68	0.00	0.10	0.00	0.22
0.00	0.00	0.00	0.65	0.14	0.00	0.21
0.00	0.00	0.03	0.02	0.72	0.00	0.23
0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00	0.00	0.05	0.03	0.17	0.00	0.75

When

you

play

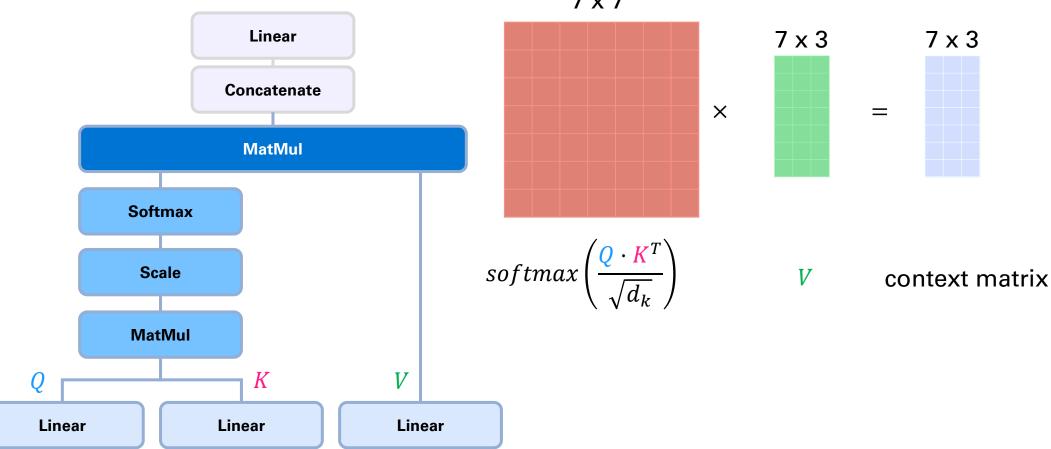
the

game

of

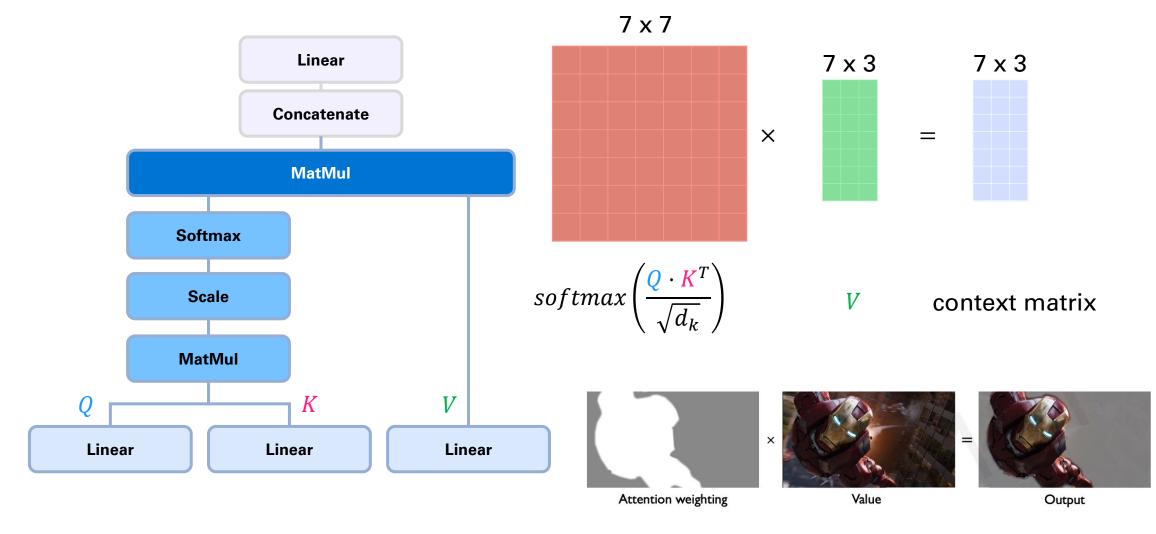
thrones

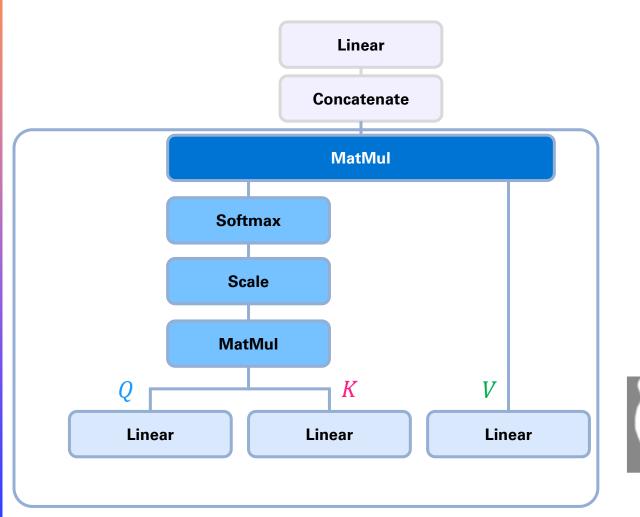
Self-attention



7 x 7

Self-attention

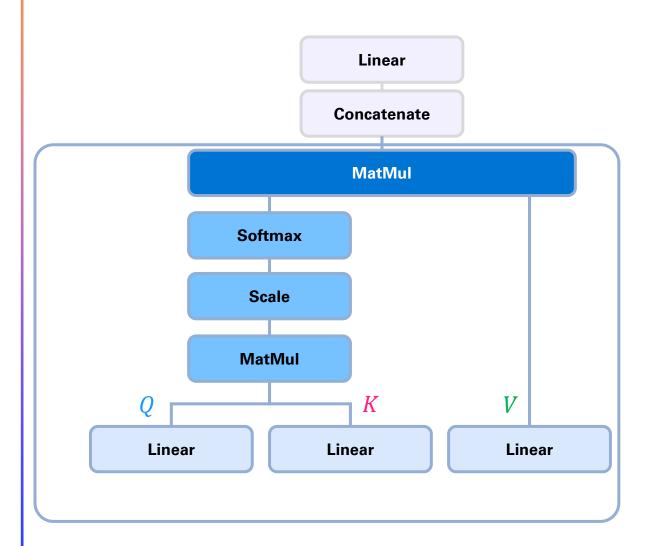




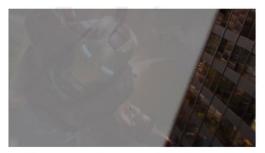
All this work is done by a single head... ... but we have multiple heads

Attention weighting

Output

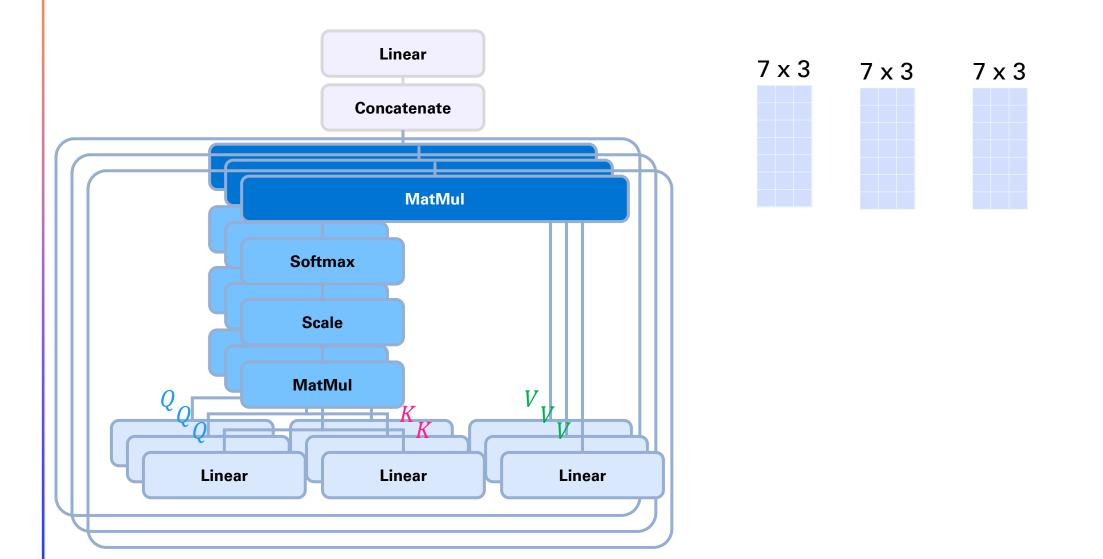


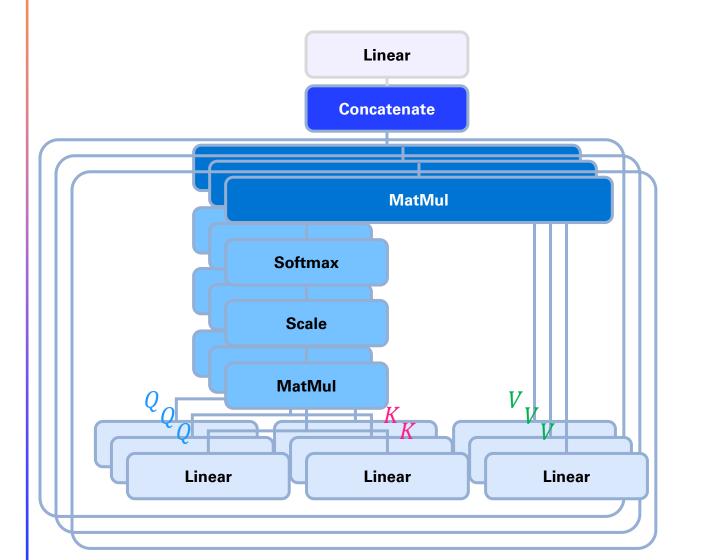
Output of attention head I

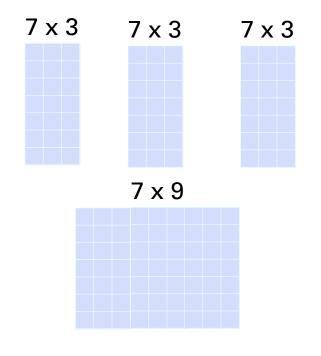


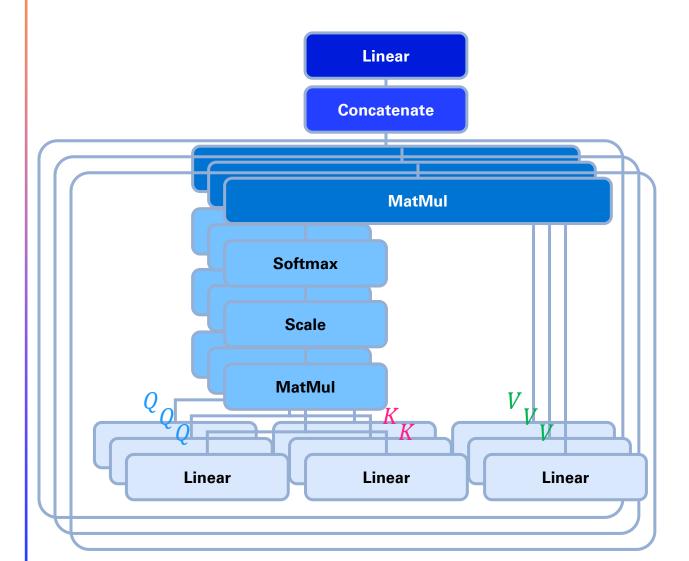
Output of attention head 2

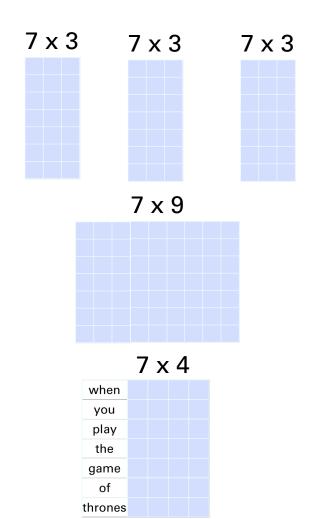
Output of attention head 3



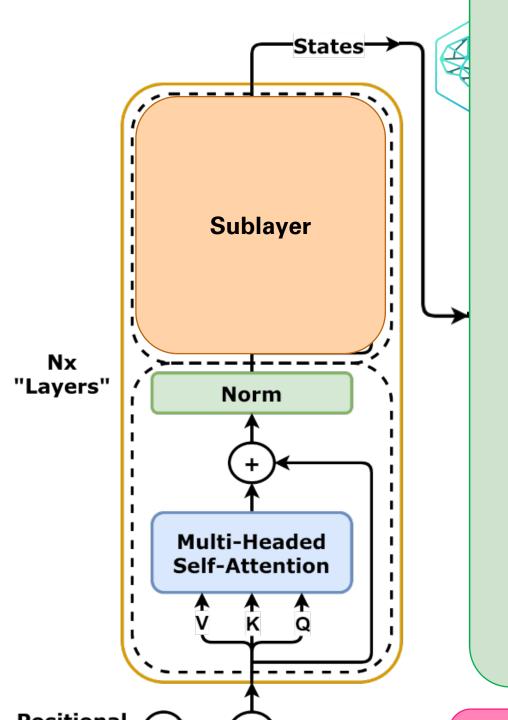








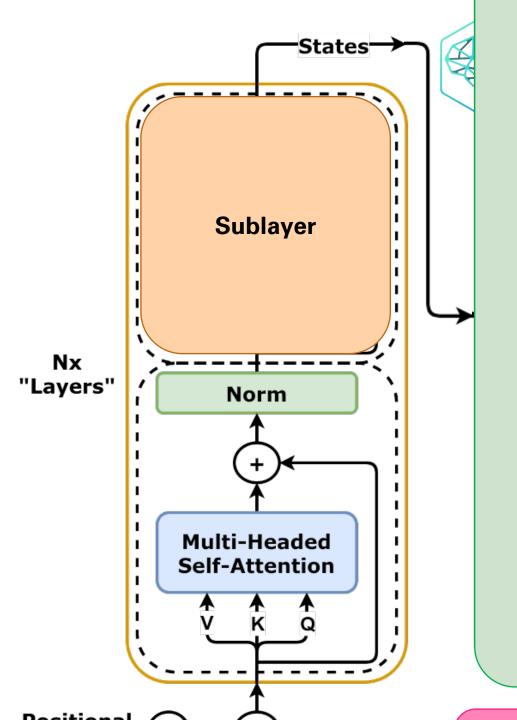
Architecture

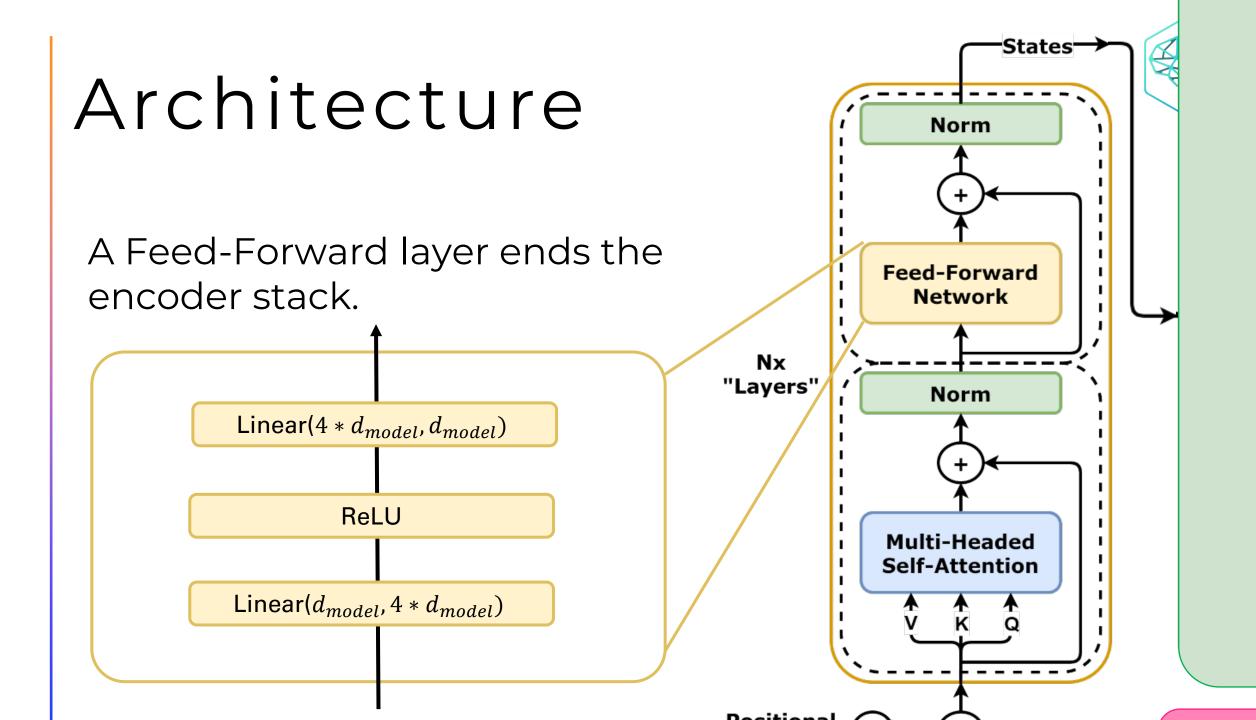


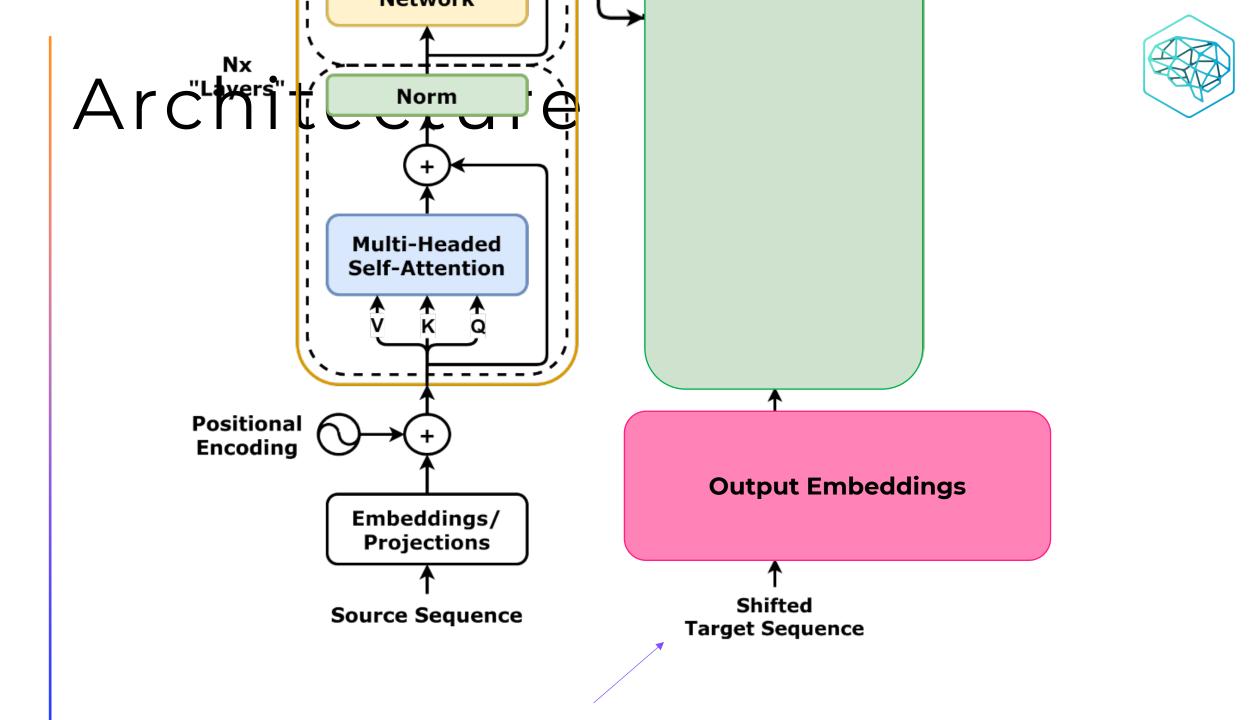
Architecture

To the output of Multi-Headed Self-Attention we apply:

- A Residual Connection;
- A Normalization Block:
 - Batch Normalization
 - Layer Normalization







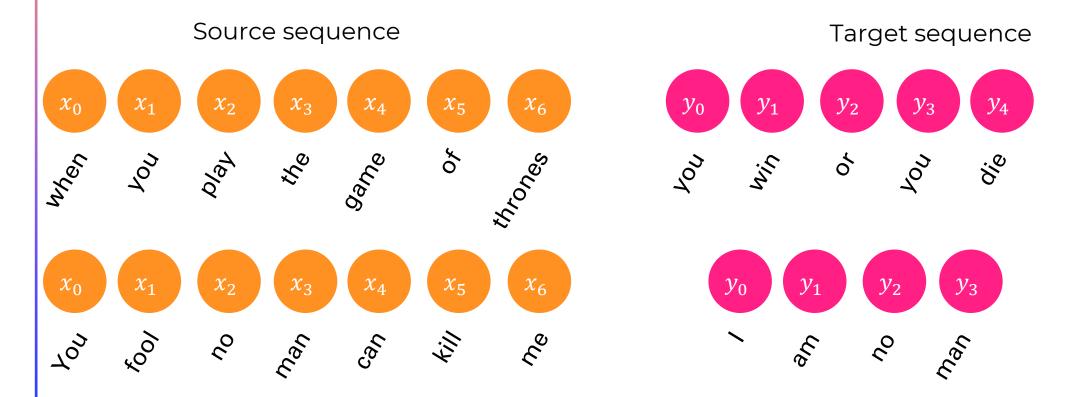
Like the source sequence...

It is a sequence of *tokens* (1, *T*)

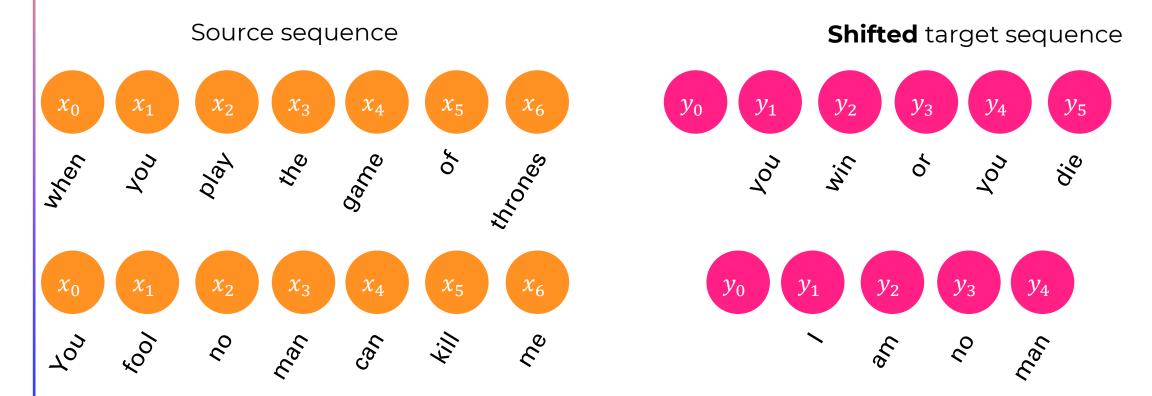
which tokens?

- time dimension
- sequence length
- number of tokens

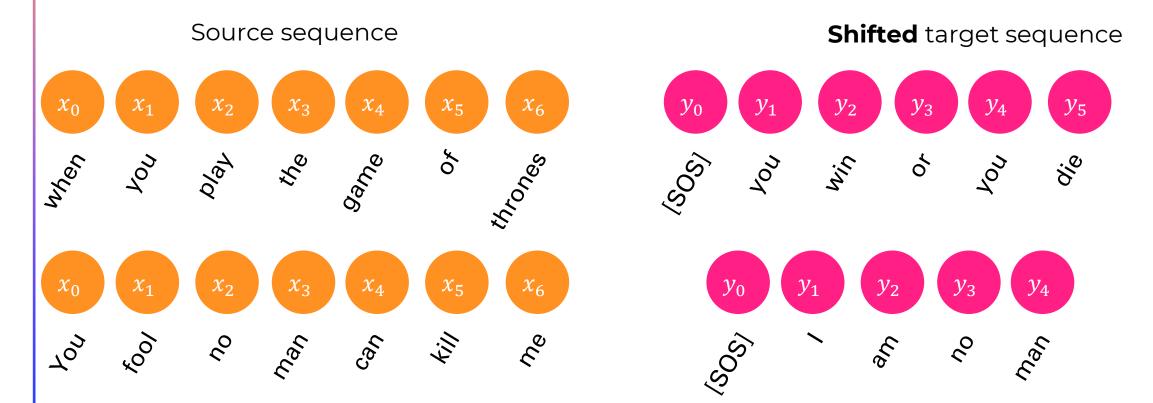
which tokens?



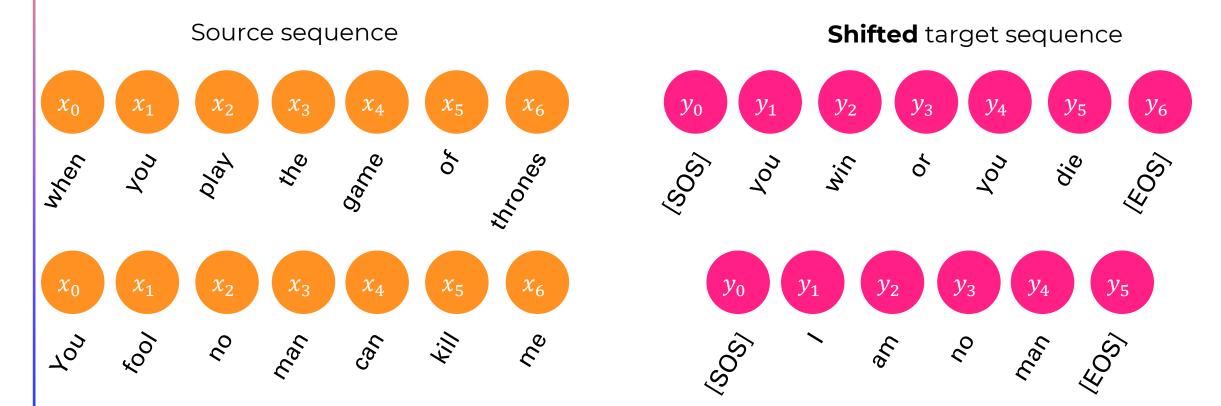
which tokens?

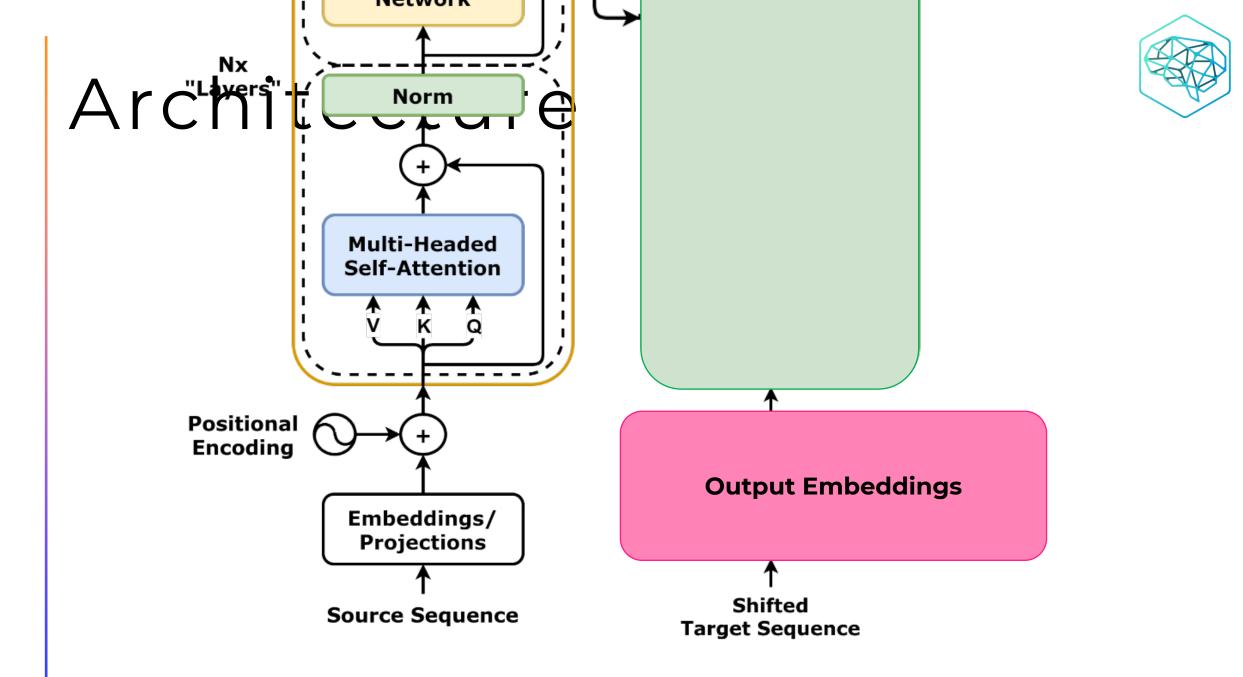


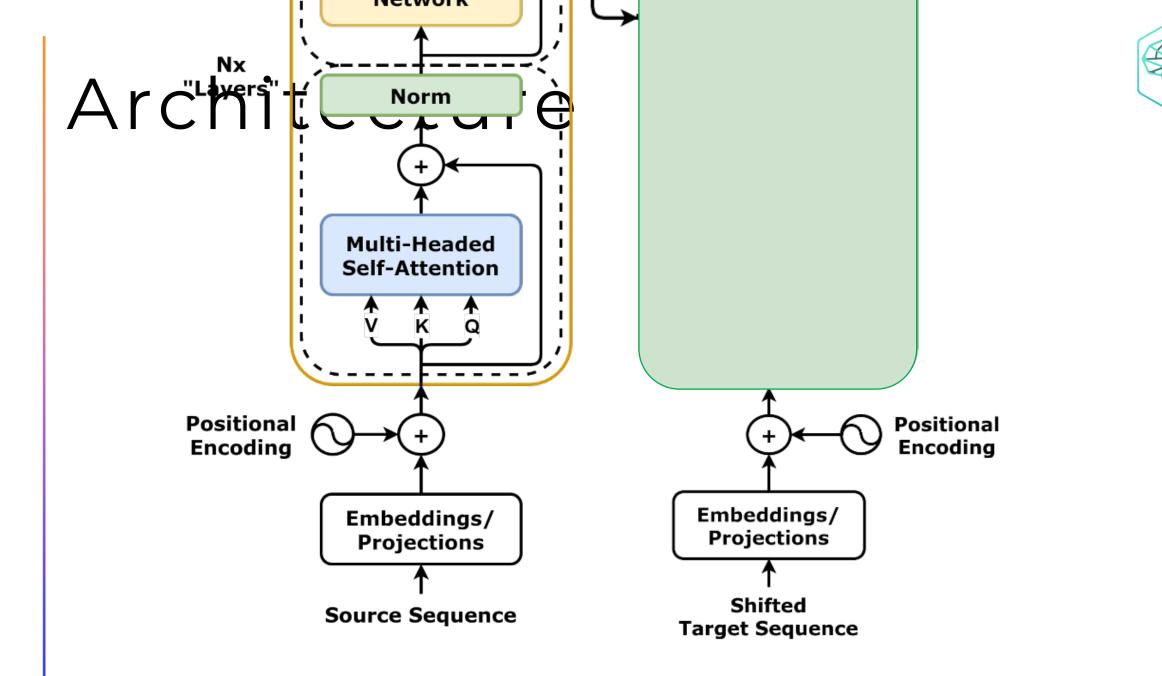
which tokens?

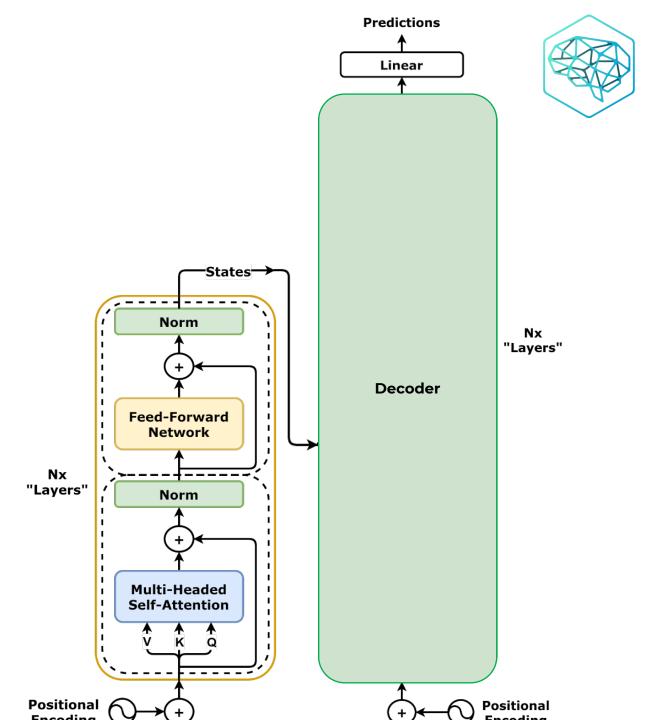


which tokens?









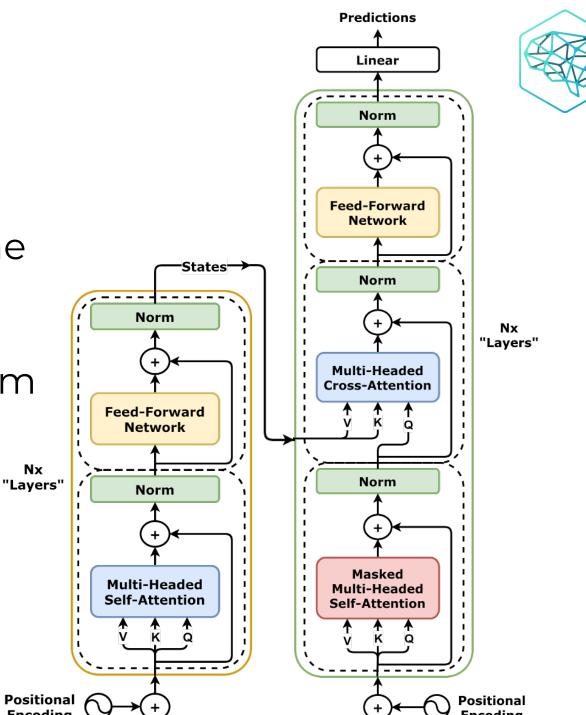
Architecture

Architecture

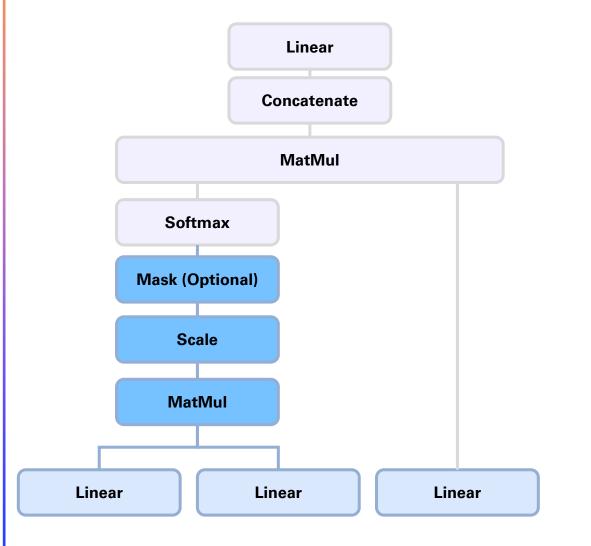
Decoder stack is similar to the Encoder one.

The Self-Attention mechanism is sligthly modified by:

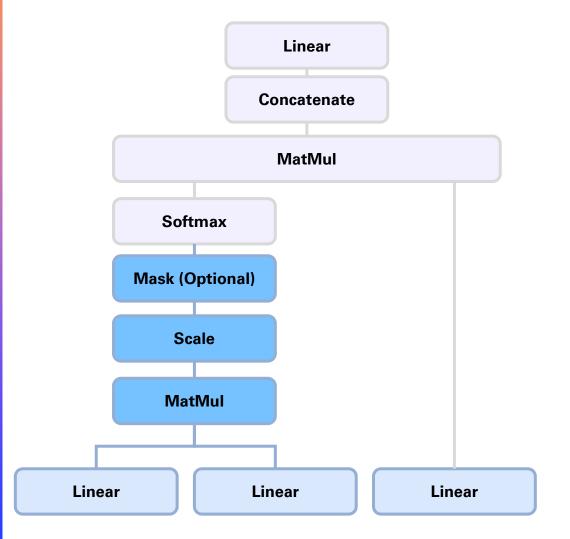
- Masked Self-Attention
- Cross-Attention



We don't want to cheat



	[SOS]	you	win	or	you	die	[EOS]
[SOS]	33.6	7.6	15.5	3.8	20.8	3.8	22.3
you	7.6	34.0	30.6	8.3	26.5	5.7	27.2
win	15.5	30.6	35.9	3.8	34.0	11.3	34.8
or	3.8	8.3	3.8	34.8	33.3	15.1	33.6
you	20.8	26.5	34.0	33.3	37.0	16.6	35.9
die	3.8	5.7	11.3	15.1	16.6	32.1	22.3
[EOS]	22.3	27.2	34.8	34.0	35.9	22.3	37.4



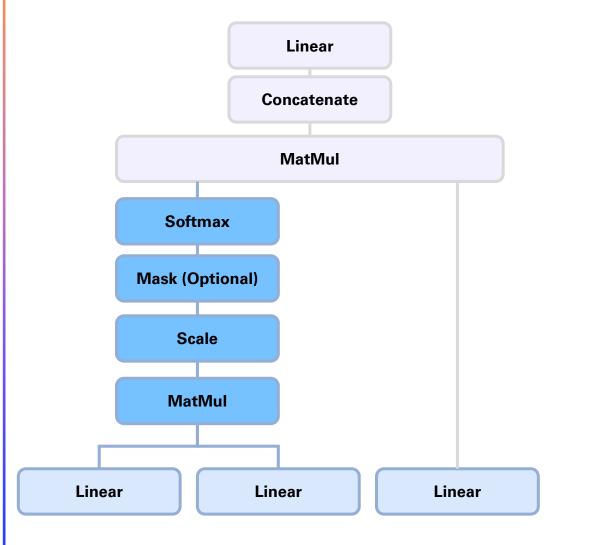
	[SOS]	you	win	or	you	die	[EOS]
[SOS]	33.6	7.6	15.5	3.8	20.8	3.8	22.3
you	7.6	34.0	30.6	8.3	26.5	5.7	27.2
win	15.5	30.6	35.9	3.8	34.0	11.3	34.8
or	3.8	8.3	3.8	34.8	33.3	15.1	33.6
you	20.8	26.5	34.0	33.3	37.0	16.6	35.9
die	3.8	5.7	11.3	15.1	16.6	32.1	22.3
[EOS]	22.3	27.2	34.8	34.0	35.9	22.3	37.4

=

0	-inf	-inf	-inf	-inf	-inf	-inf
0	0	-inf	-inf	-inf	-inf	-inf
0	0	0	-inf	-inf	-inf	-inf
0	0	0	0	-inf	-inf	-inf
0	0	0	0	0	-inf	-inf
0	0	0	0	0	0	-inf
0	0	0	0	0	0	0

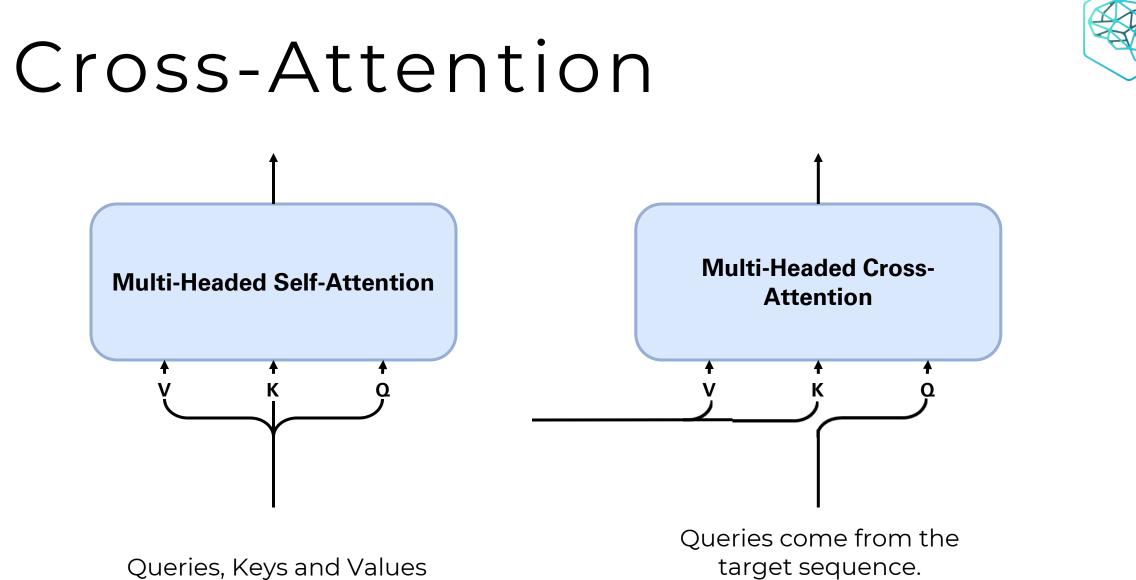
	[SOS]	you	win	or	you	die	[EOS]
[SOS]	33.6	-inf	-inf	-inf	-inf	-inf	-inf
you	7.6	34.0	-inf	-inf	-inf	-inf	-inf
win	15.5	30.6	35.9	-inf	-inf	-inf	-inf
or	3.8	8.3	3.8	34.8	-inf	-inf	-inf
you	20.8	26.5	34.0	33.3	37.0	-inf	-inf
die	3.8	5.7	11.3	15.1	26.6	32.1	-inf
[EOS]	22.3	27.2	34.8	34.0	35.9	22.3	37.4

+

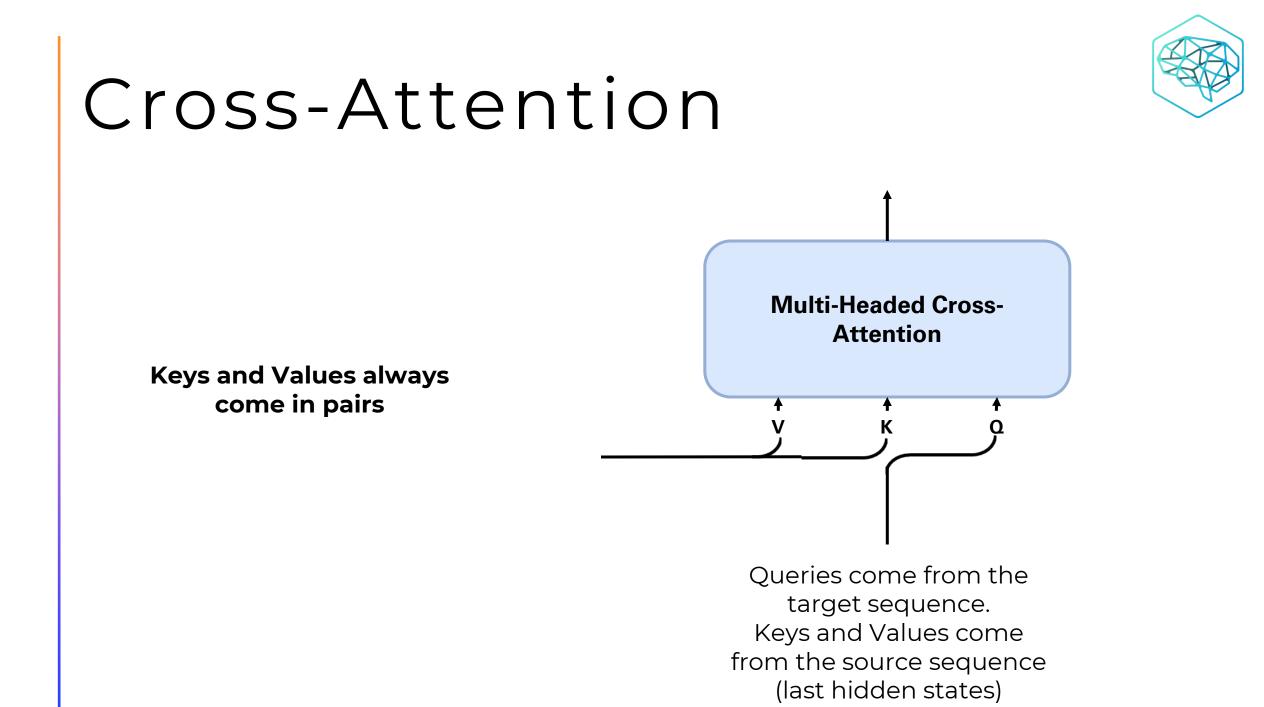


	[SOS]	you	win	or	you	die	[EOS]
[SOS]	1	0	0	0	0	0	0
you	0.01	0.99	0	0	0	0	0
win	0.001	0.004	0.995	0	0	0	0
or	0.003	0.004	0.003	0.99	0	0	0
you	0.003	0.003	0.04	0.02	0.93	0	0
die	0.001	0.001	0.001	0.001	0.001	0.995	0
[EOS]	0.00	0.00	0.05	0.03	0.17	0.00	0.75

	[SOS]	you	win	or	you	die	[EOS]
[SOS]	1	0	0	0	0	0	0
you	0.01	0.99	0	0	0	0	0
win	0.001	0.004	0.995	0	0	0	0
or	0.003	0.004	0.003	0.99	0	0	0
you	0.003	0.003	0.04	0.02	0.93	0	0
die	0.001	0.001	0.001	0.001	0.001	0.995	0
[EOS]	0.00	0.00	0.05	0.03	0.17	0.00	0.75



all come from the same sequence Queries come from the target sequence. Keys and Values come from the source sequence (last hidden states)

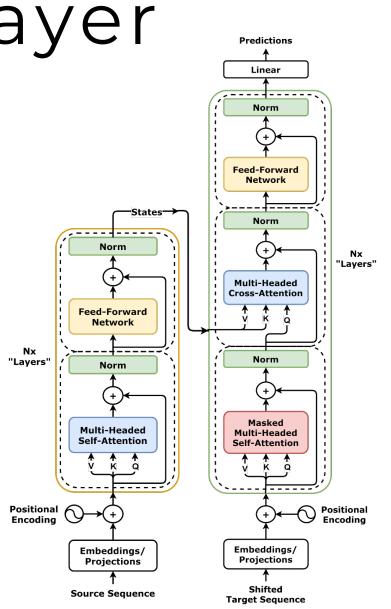


The final linear layer

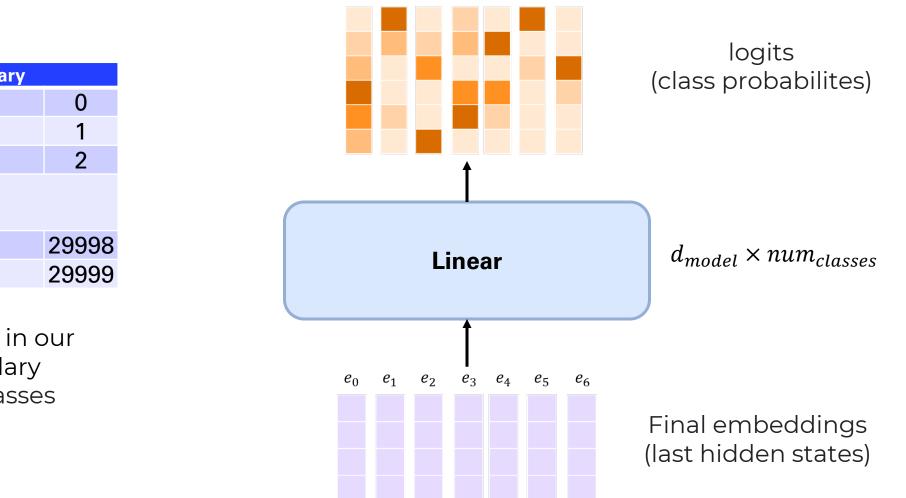
As always, all tasks can be regarded as classification or regression problems

Here we have a classification problem:

- for each input token we want to predict the next one
- we choose between all the known words (the size of vocabulary)



The final linear layer



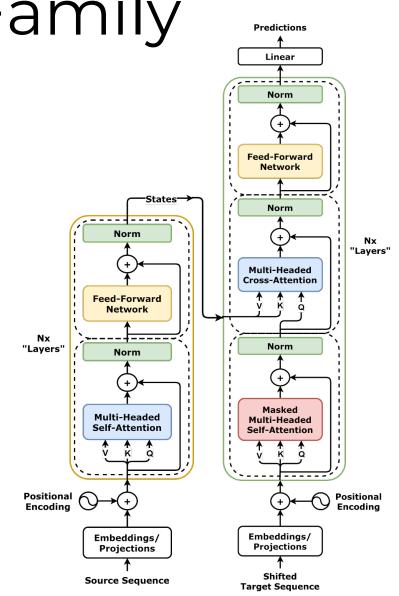
Vocabulary	
The	0
cat	1
is	2
provide	29998
access	29999

30k words in our vocabulary ⇒ 30k classes

We don't need always the complete architecture.

We can have:

- Encoder-Only Models
- Decoder-Only Models
- Encoder-Decoder Models



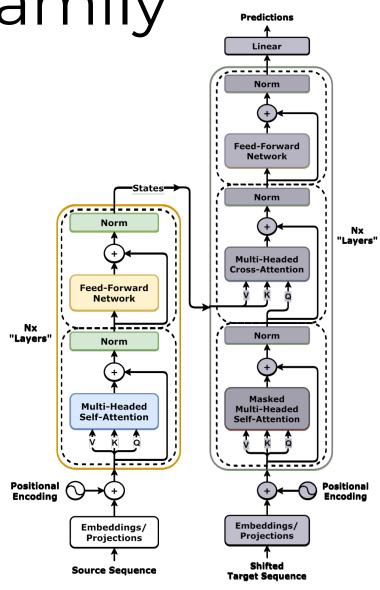
0

+

Encoders are suitable anytime we want to represent a sequence in a latent space

Famous Encoder architectures:

- BERT
- ELECTRA
- ViT



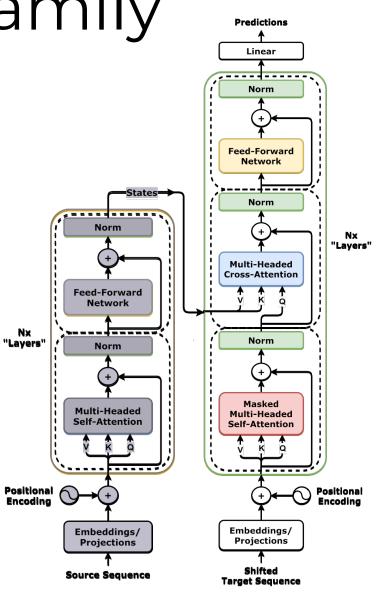
0

+

Decoders are suitable anytime we want to generate something (Text Generation)

Famous Decoder architectures:

• GPT



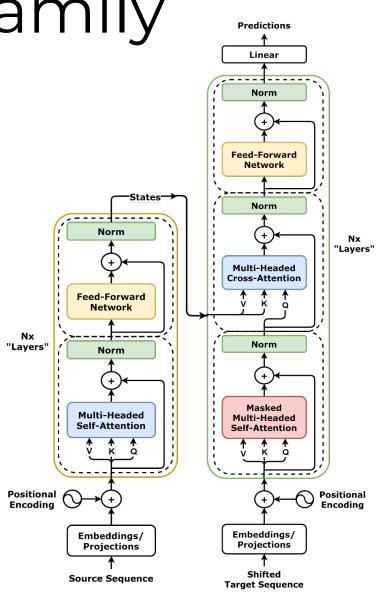
+

0

Encoder-Decoder is used anytime we want to predict a new sequence given a source sequence (Machine Translation, Forecasting, Summarization...)

Famous Encoder-Decoder models:

- BART
- T5



┿

 \mathbf{O}

VISION TRANSFORMER + (VIT)

Transformers were born for text...

- Transformers are domain-agnostic models, designed to process any type of sequential input.
- Any input that can be represented as a sequence of tokens can be fed into a Transformer model:
 - Audio

•

- Protein sequences
- Time series
- EEG signals

0

What about images?

0

• Images are 2D grids of pixels, not sequences.

• Images are 2D grids of pixels, not sequences

But...

• Images are 2D grid of pixels, not sequences

But...

...we can reshape them into a sequence of **patches**

+

1) Image is divided into *patches*

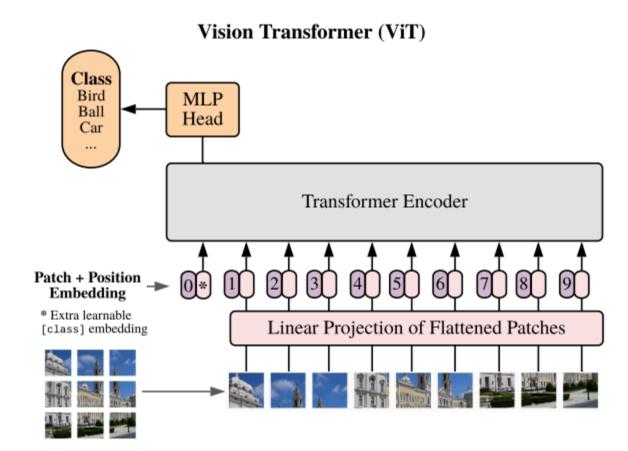
2) Each patch is treated as a token in a sequence

3) Since patches have 2 dimensions they are flattened

+

ViT Architecture

Then, we can use the Transformer Architecture as we know

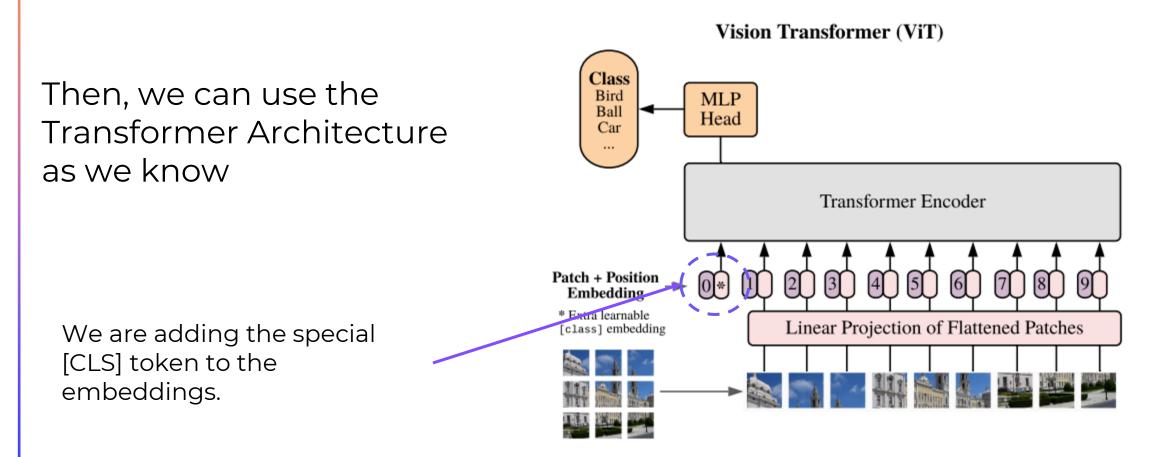


+

0

Dosovitskiy et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale". ICLR2021. [Paper]

ViT Architecture

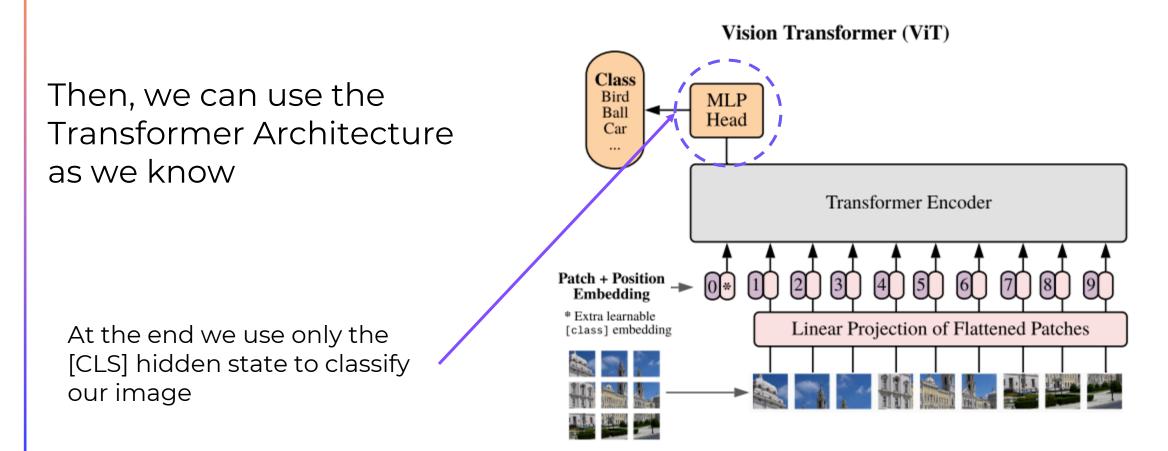


+

0

Dosovitskiy et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale". ICLR2021. [Paper]

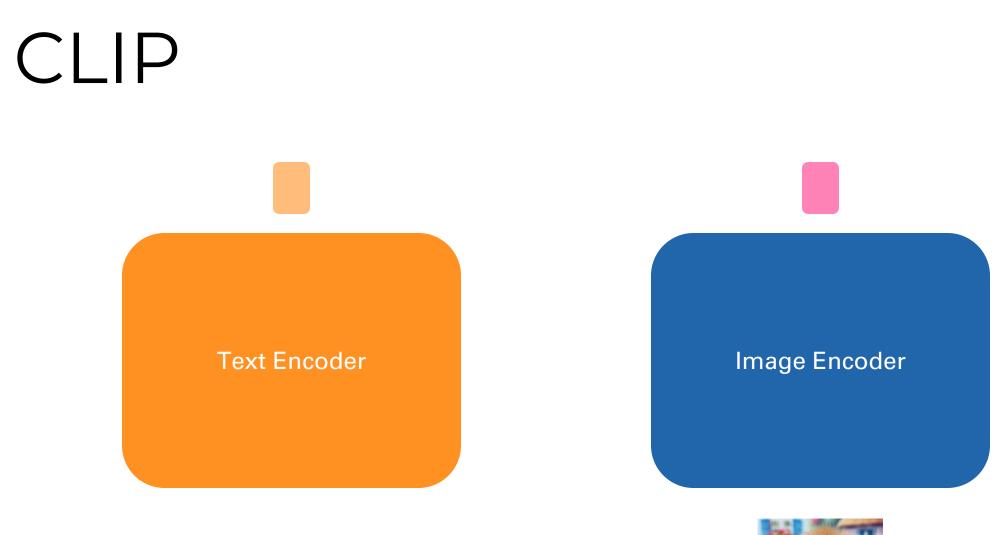
ViT Architecture



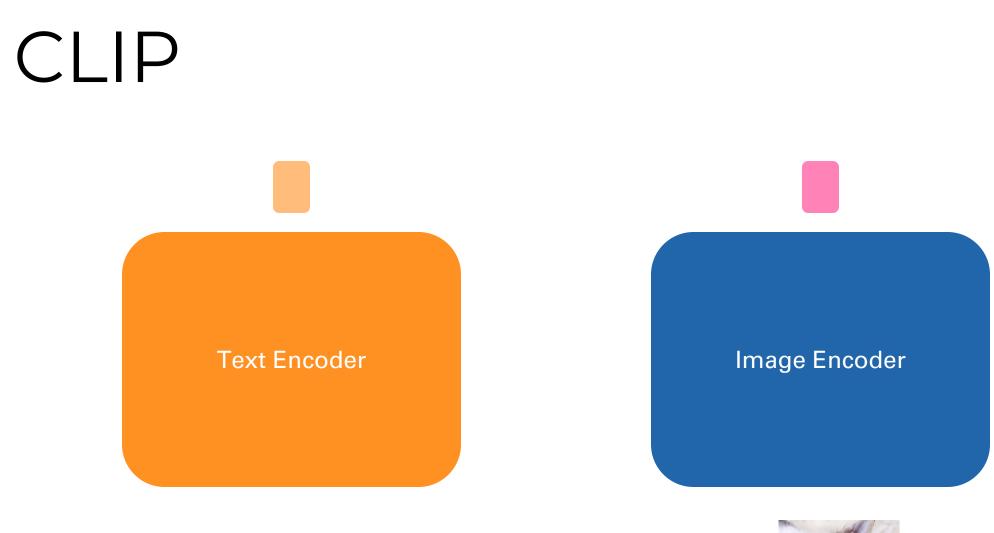
+

0

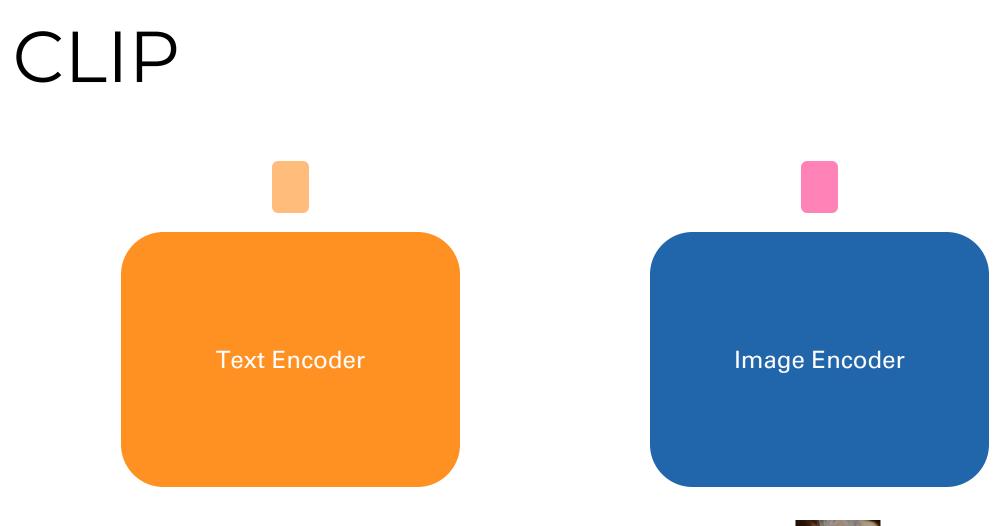
Dosovitskiy et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale". ICLR2021. [Paper]



dog



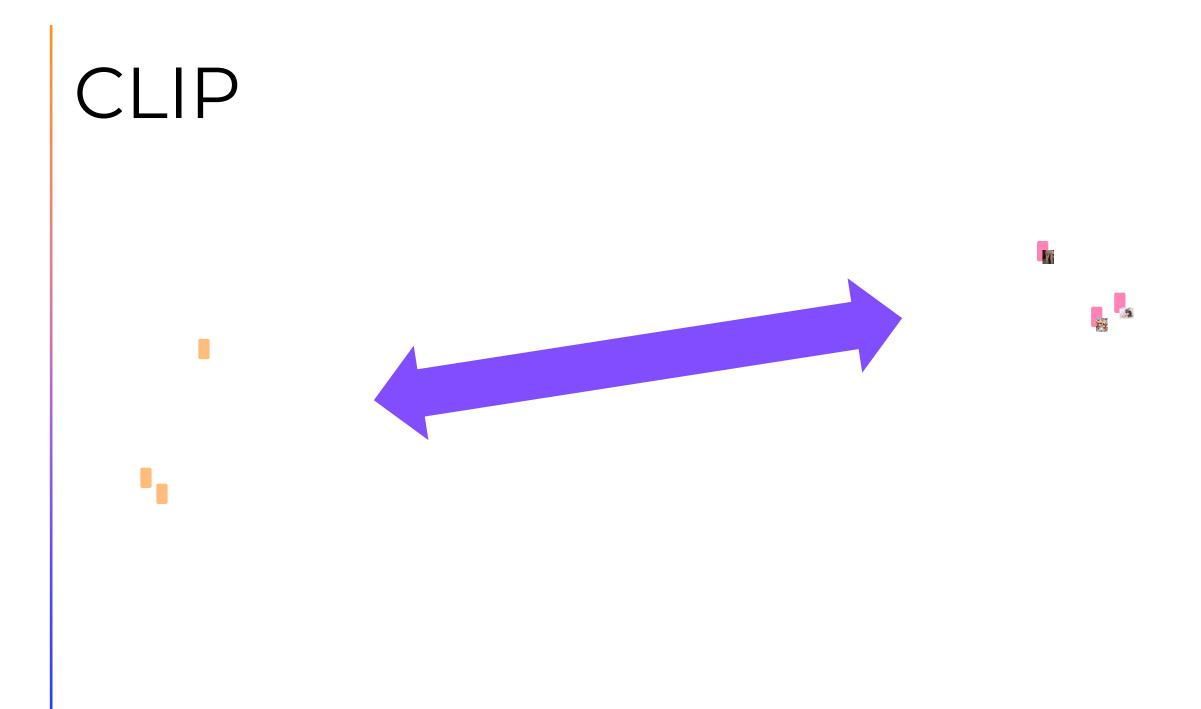
cat

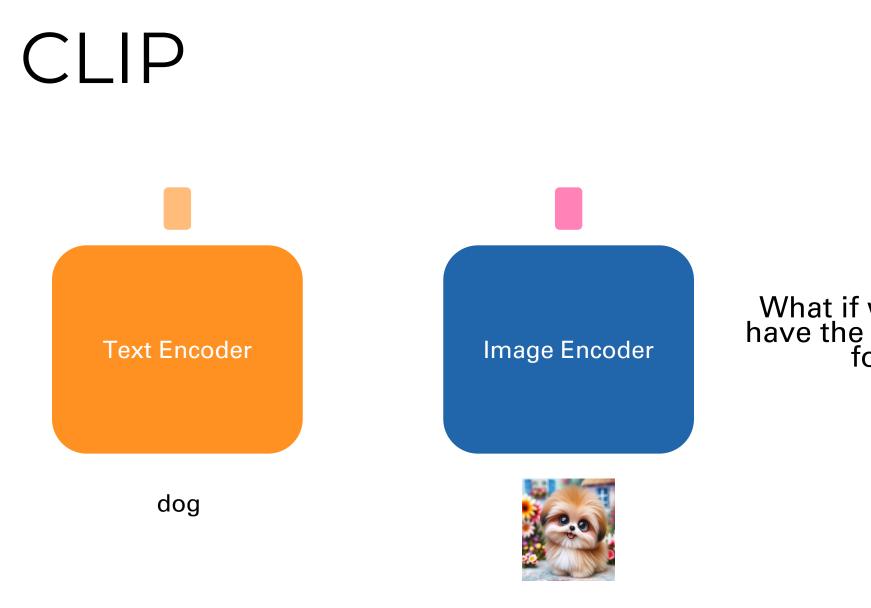


Gandalf

CLIP

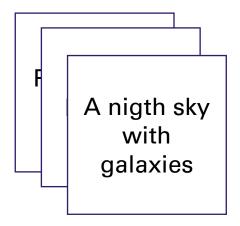
CLIP

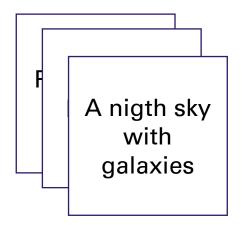


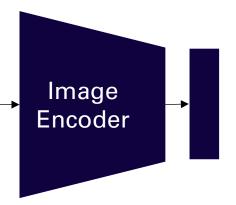


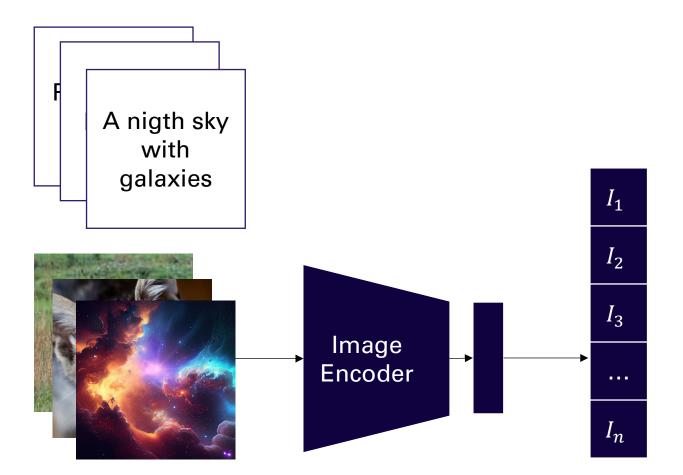
What if we force encoders to have the *same* representation for the same concept?

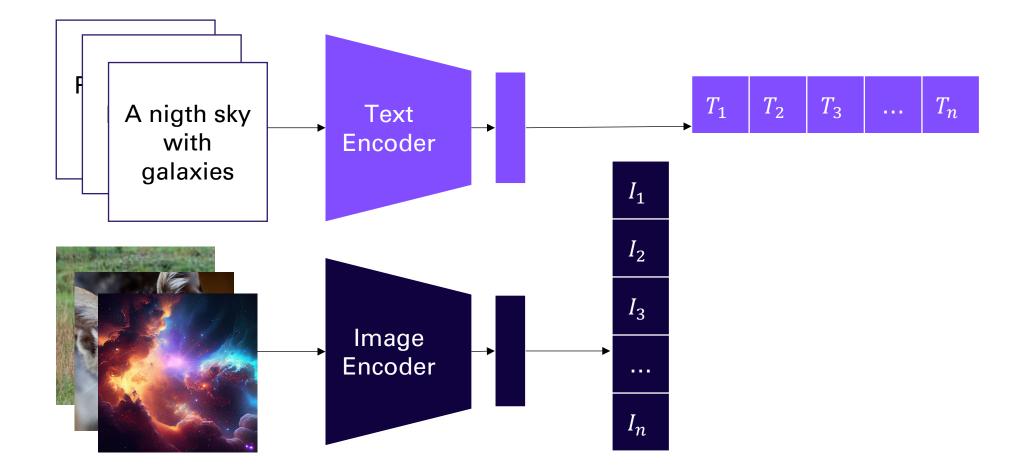
A nigth sky with galaxies

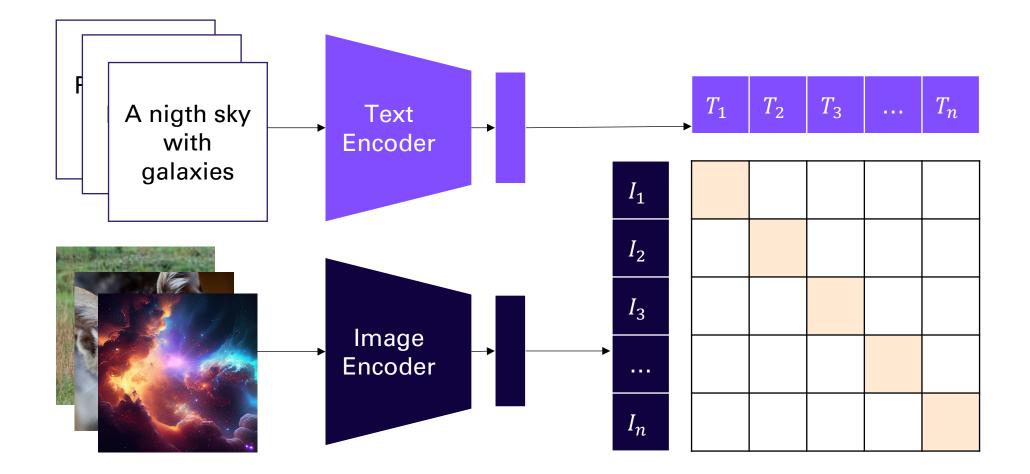


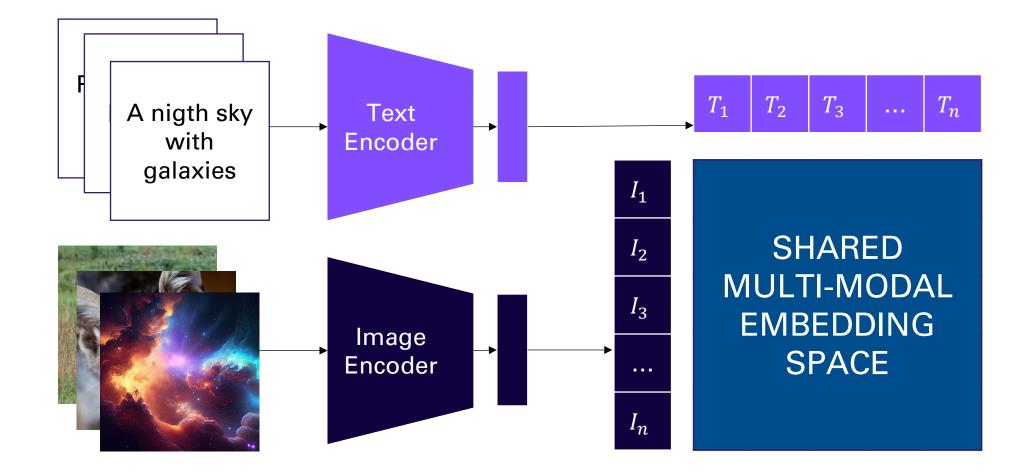












LEARNIG PARADIGNS

Training a Neural Network

Data

Computing Resources

Training a Neural Network

Data

Computing resources

0

Label Availability (Labeled/ Unlabeled)

Temporal Availability (Offline / Continual)

Data Distribution (Centralized / Federated)

Label Availability

+

0

Expensive annotation (possibly requiring domain expertise) Relatively small datasets High-quality training signal (?)

Labeled

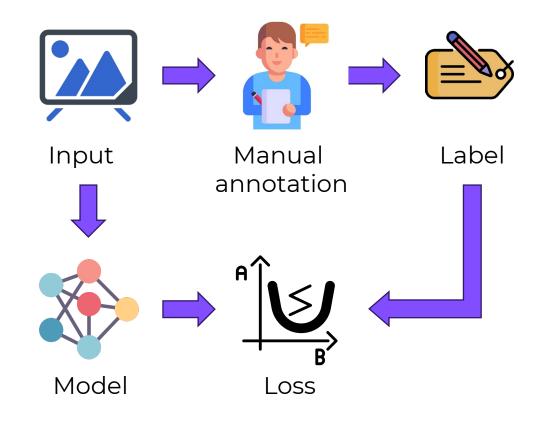
Easy to collect

Abundant supply

No explicit Supervision

Unlabeled

Supervised Learning (SL)

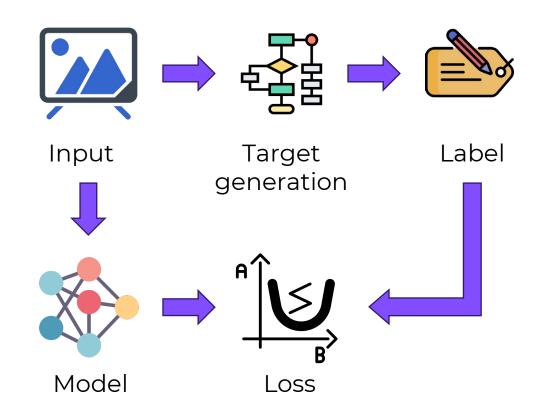


+

0

For each observation x_i there is an associated response y_i

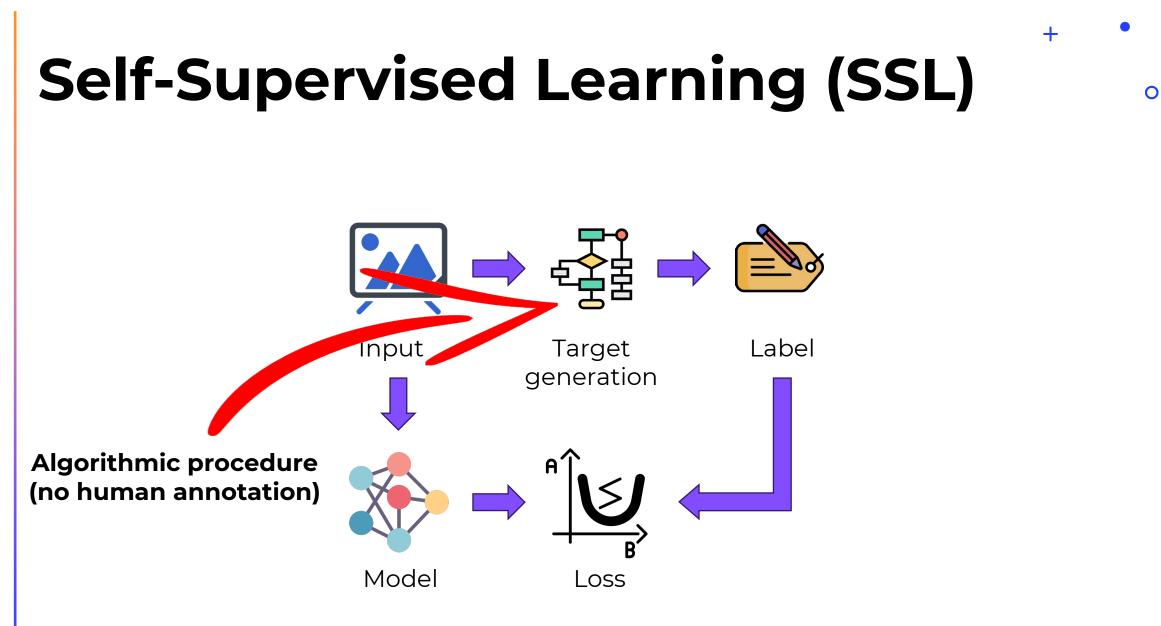
Self-Supervised Learning (SSL)



+

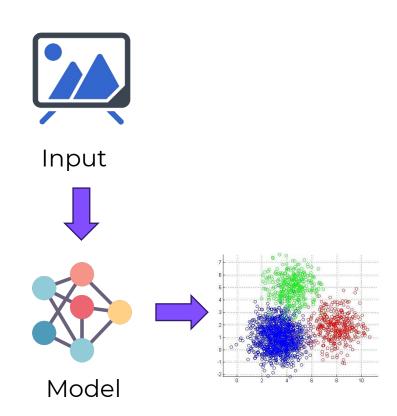
0

For each observation x_i a response y_i is generated from the data itself



For each observation x_i a response y_i is generated from the data itself

Unsupervised Learning (UL)



No response y_i is provided: the model learns patterns directly from the input x_i

Self-Supervised vs Unsupervised

0

• Both assume the lack of manual annotated supervisory signals

• Different objectives:

- UL: identify patterns in data, usually for clustering, dimensionality reduction, anomaly detection.
- SSL: learn a data representation that can be transferred to other tasks
- Self-Supervised Learning tends to use loss functions typical of supervised learning (e.g., MSE, NLL)

Self-Supervised Learning

- How to generate effective labels?
- Design a prediction task that requires high-level understanding of the inputs

+

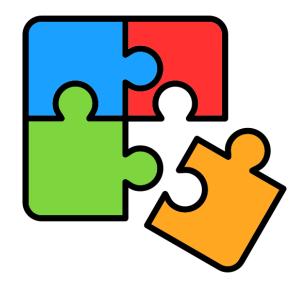
Pretext tasks

• Hand-craft a task that requires domain knowledge to be solved

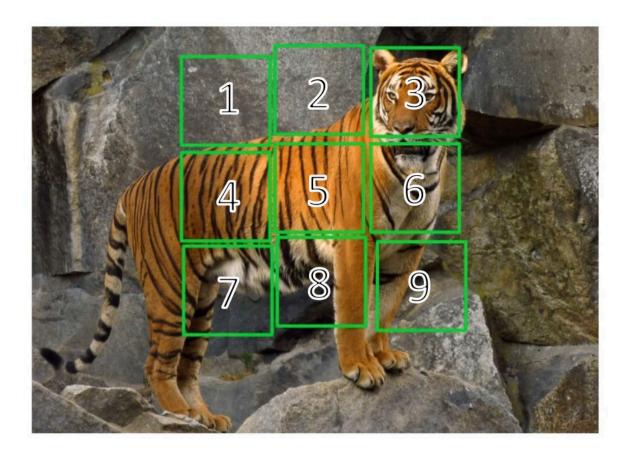
+

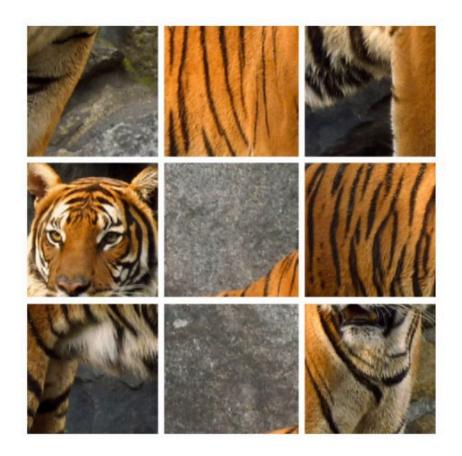
0

• Generally posed as a classification problem

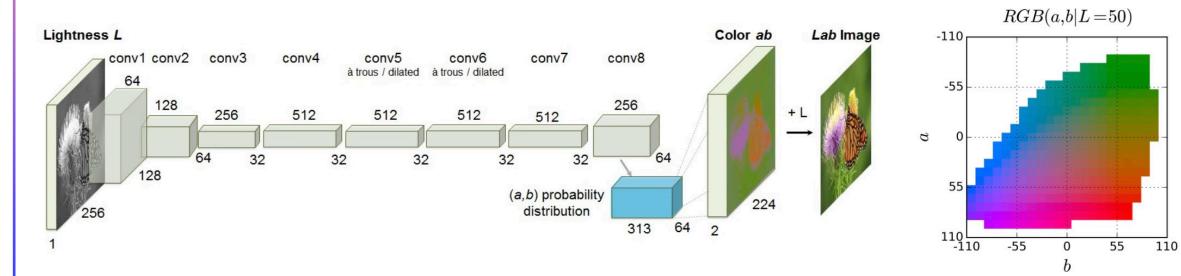


Jigsaw puzzle





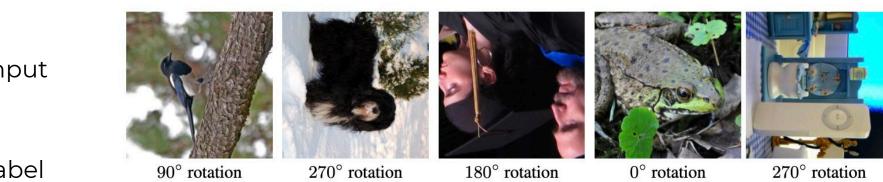
Colorization



313 classes

+

Rotation



input

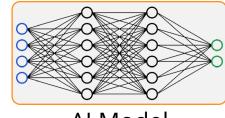
label

+

0

4 classes

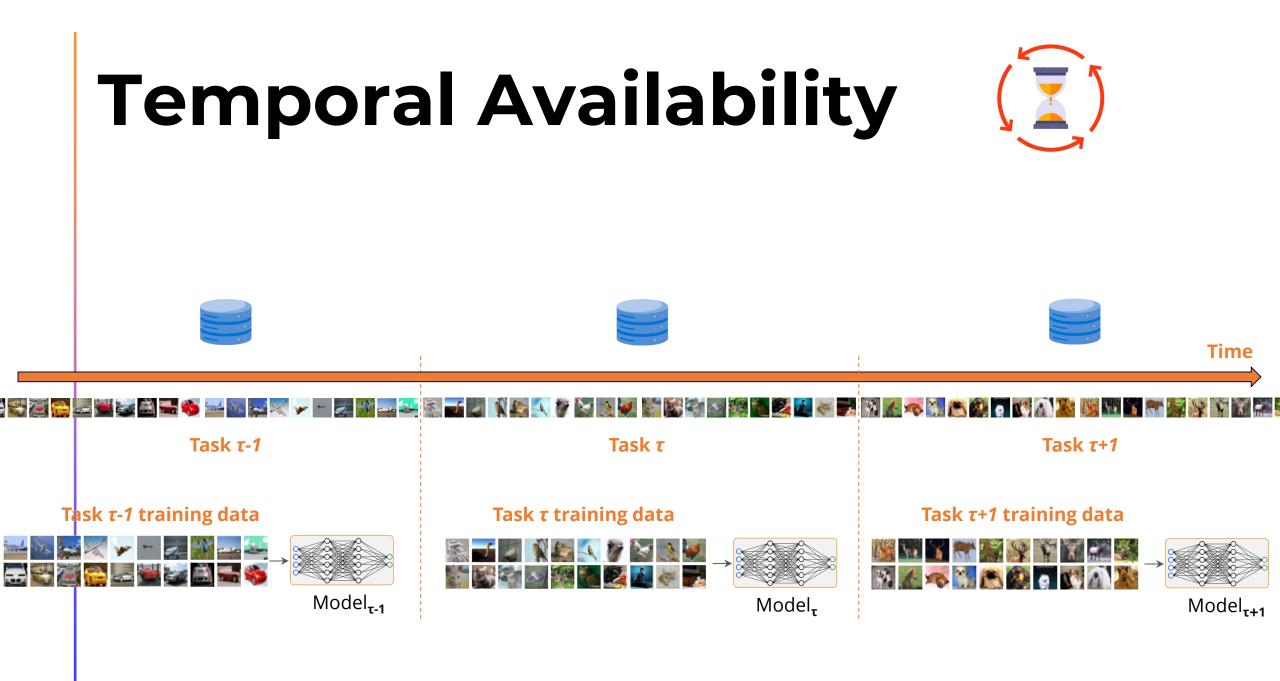
Temporal Availability

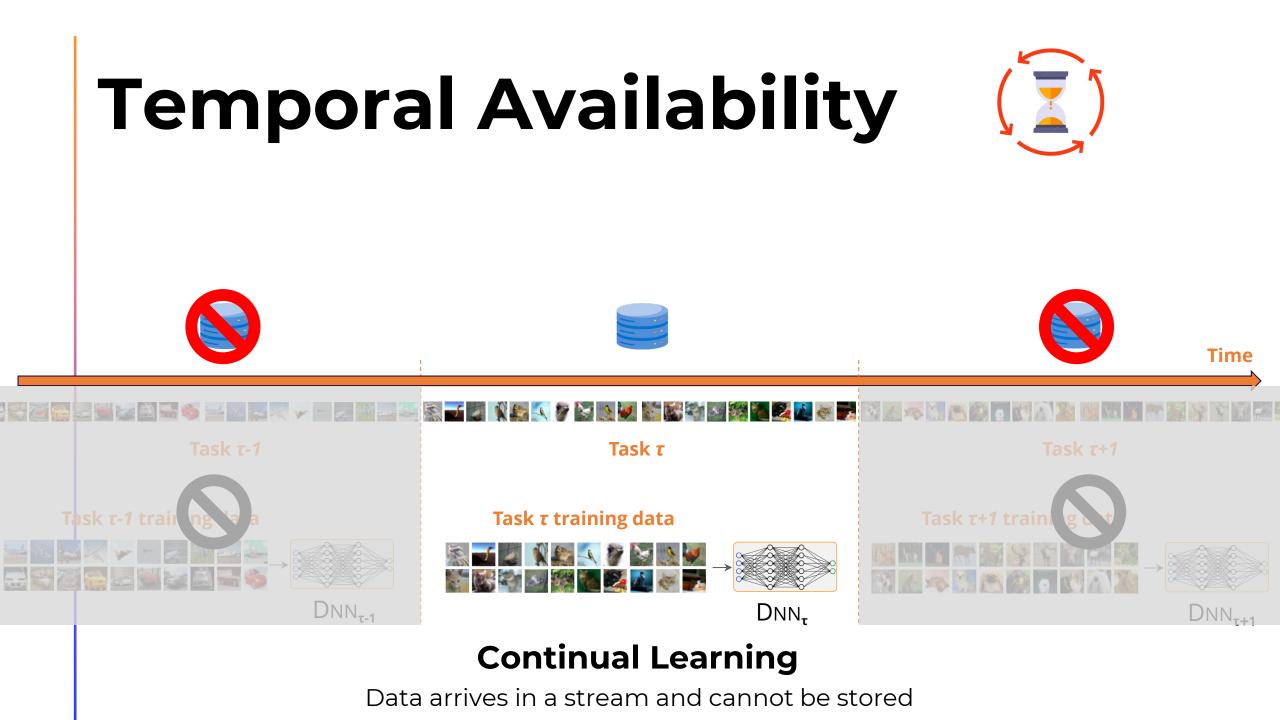


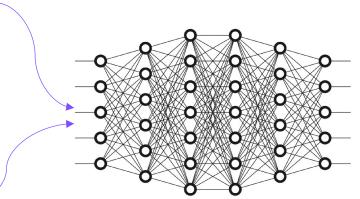
Al Model

Offline Learning

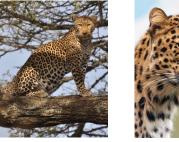
All data is available at once



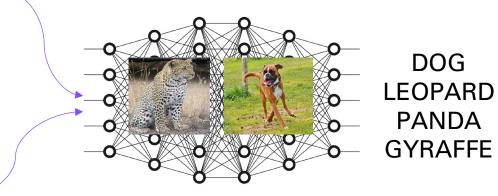




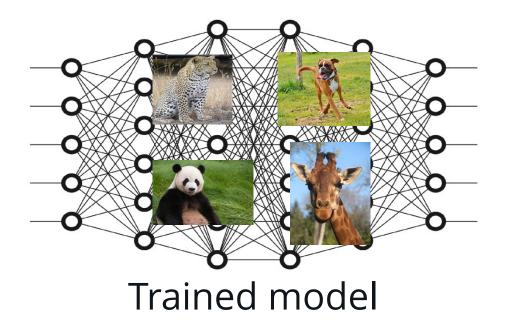
DOG LEOPARD

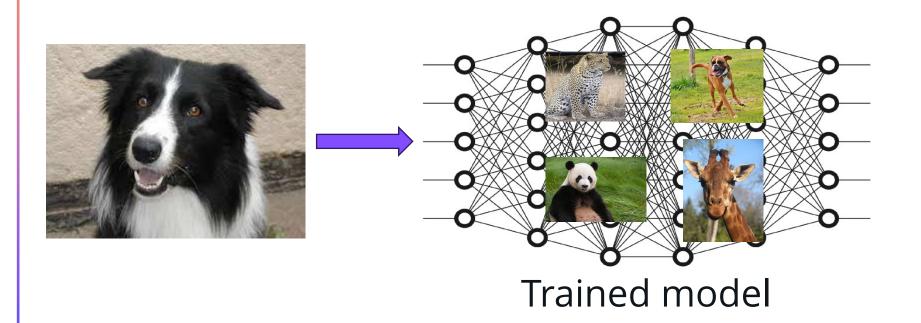


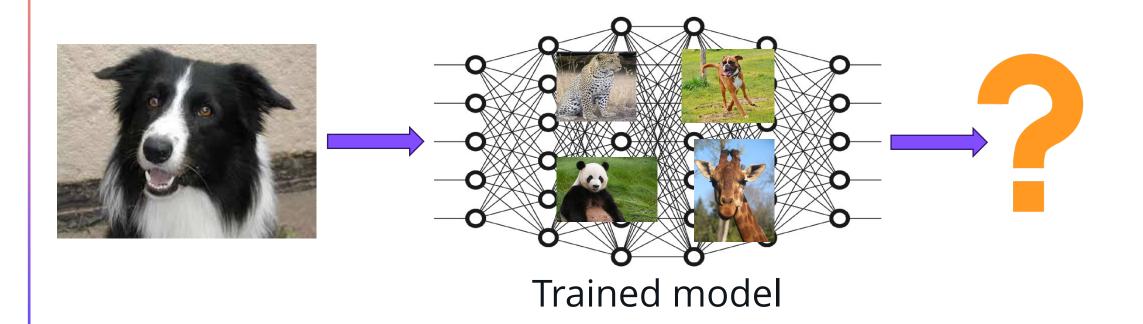
Task *τ***=1**

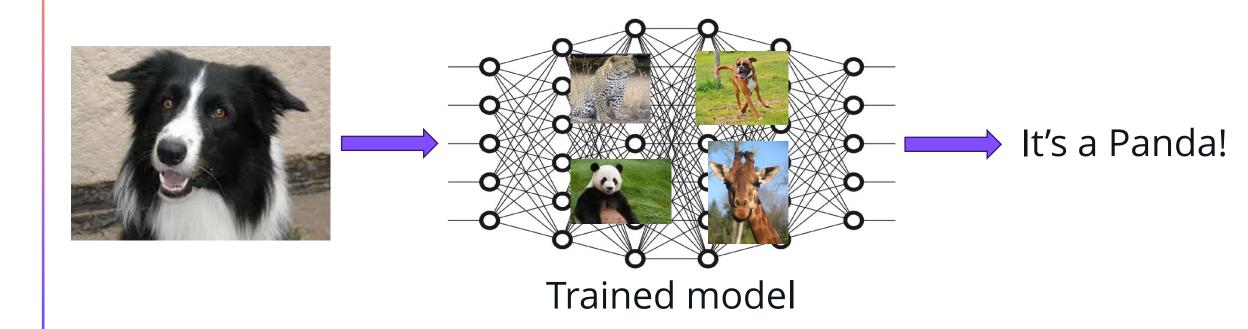


Task *τ***=2**





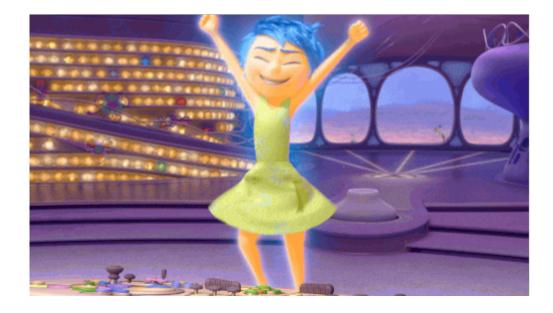




Offline learning

Evaluation after training:

→ **93.25 % Accuracy**



Offline learning

Evaluation after training:

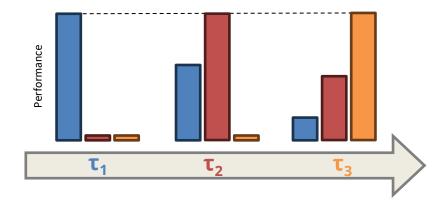
Continual learning Evaluation after τ tasks:

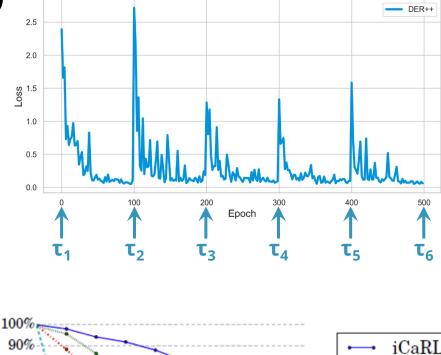
Evaluation after training:

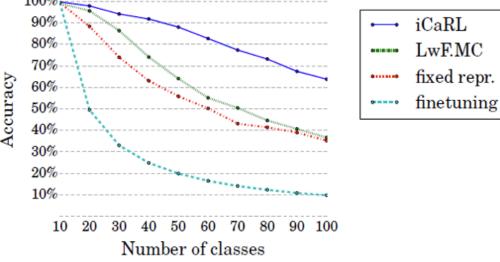
→ **93.25 % Accuracy**

Continual learning Evaluation after *t* tasks:

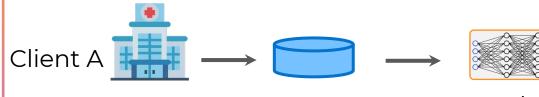
→**19.62 % Accuracy**



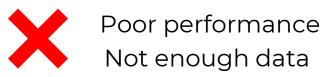




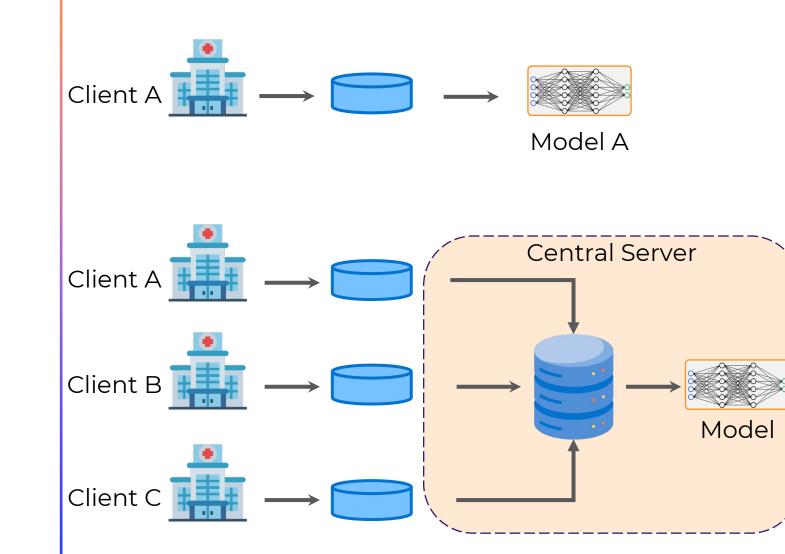
Data Distribution

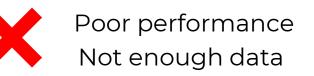


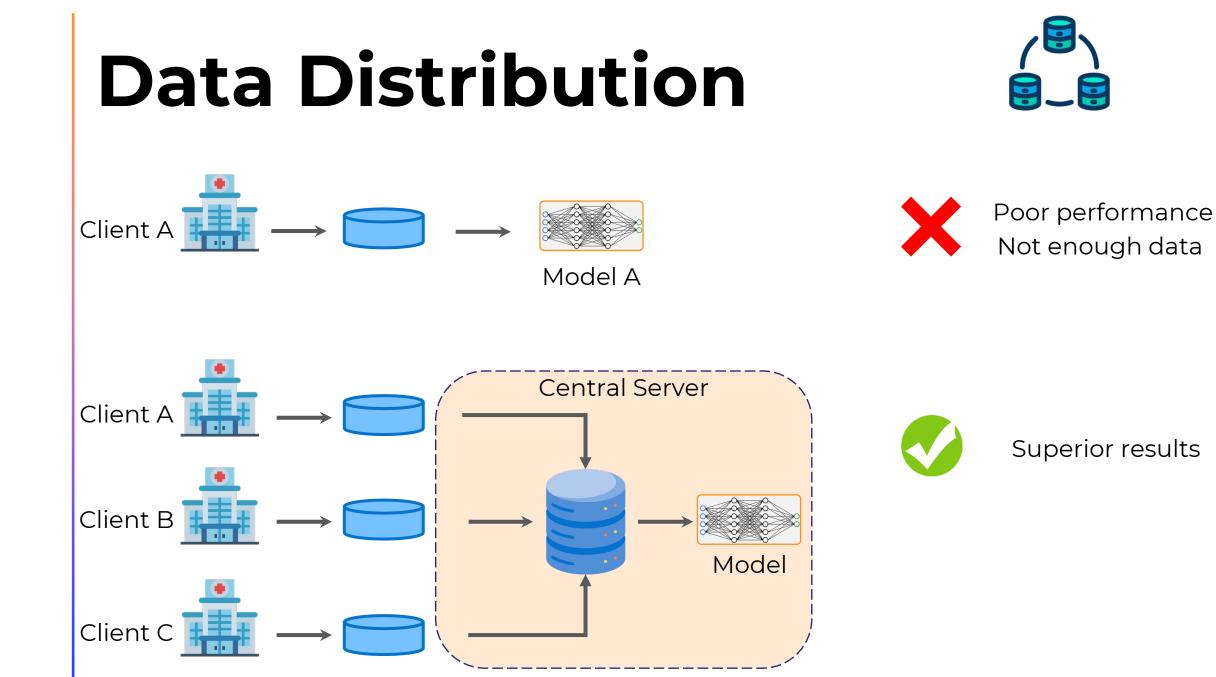
Model A

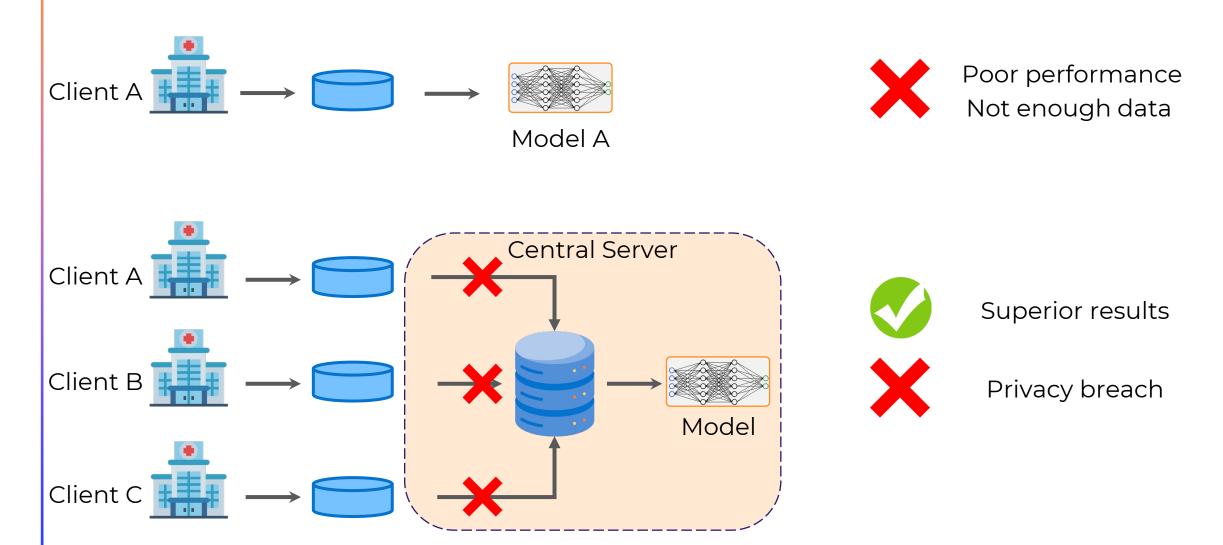


Data Distribution

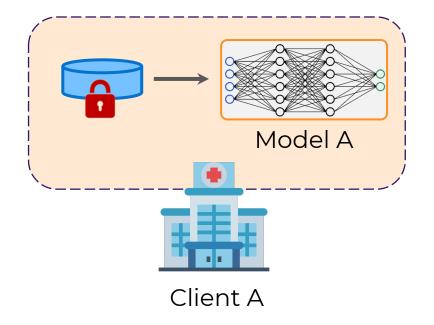


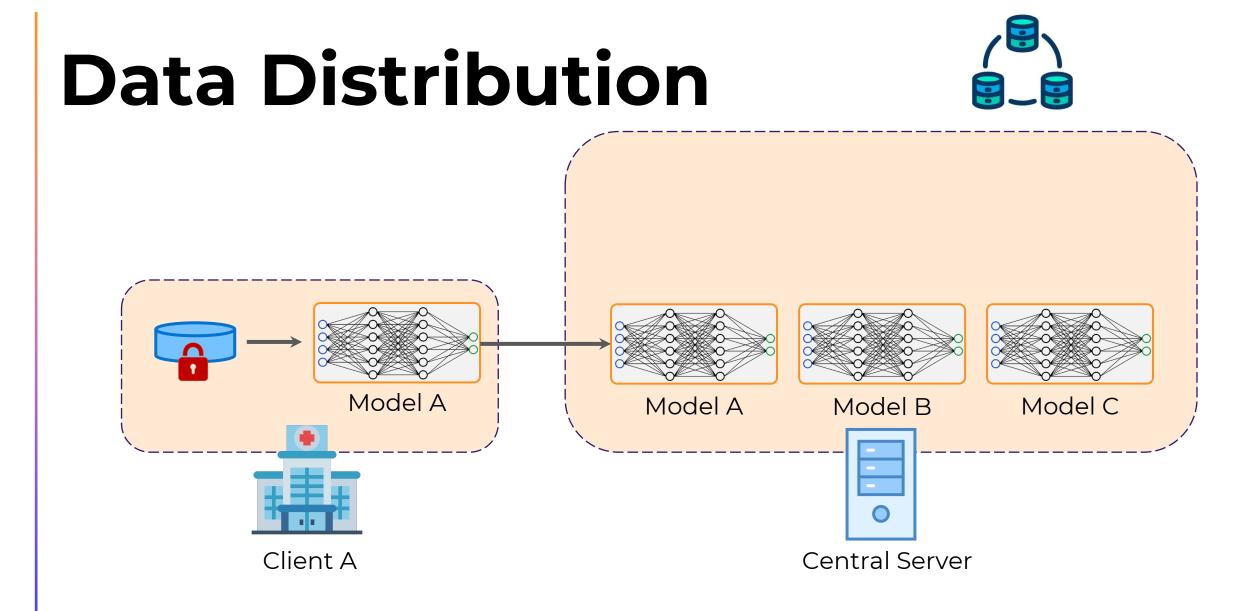


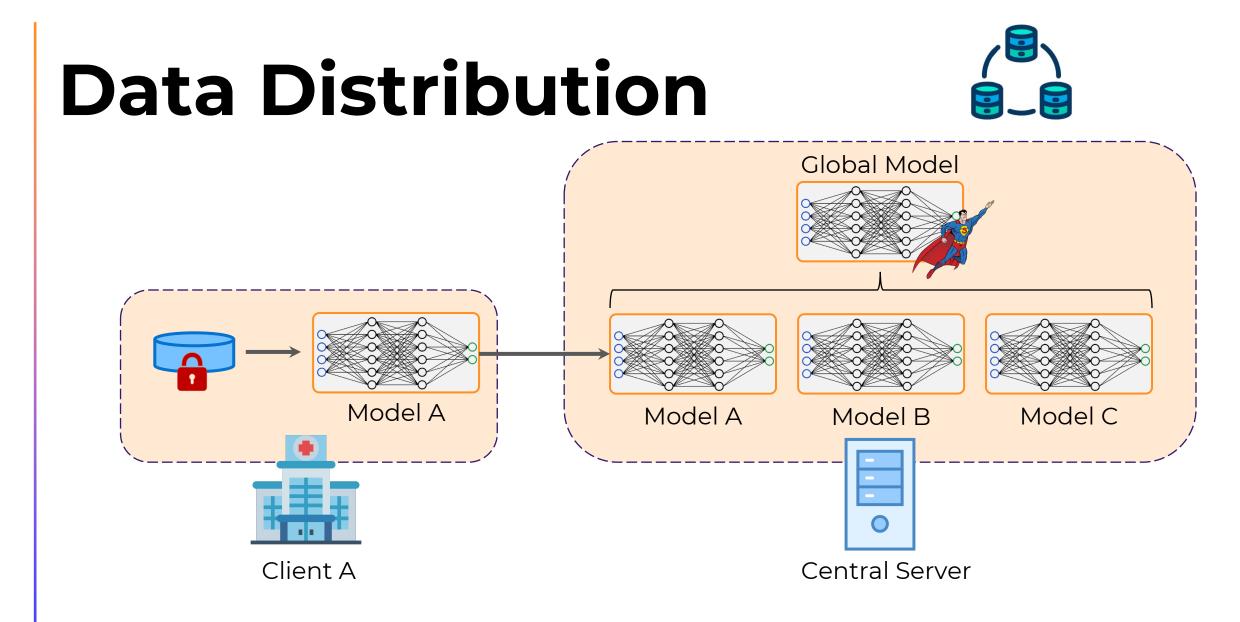


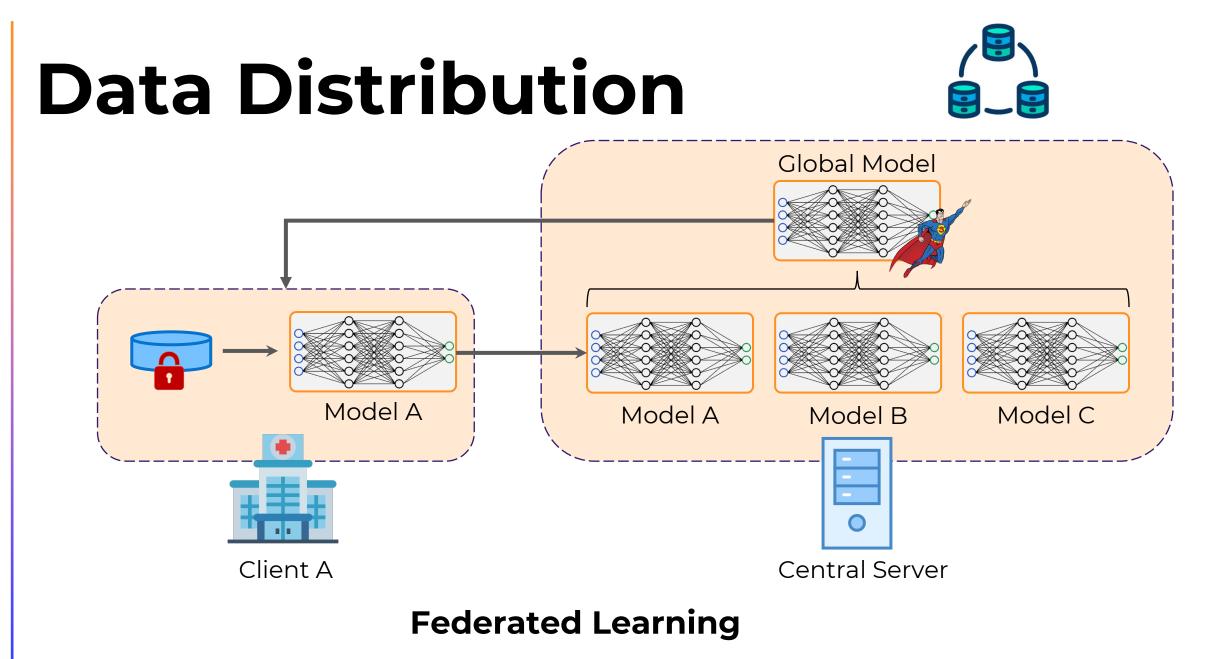


Data Distribution









Data remains distributed across multiple clients, only model updates are shared

PERCEIVE.AI LAB

University of Catania

simone.palazzo@unict.it giovanni.bellitto@unict.it federica.proiettosalanitri@unict.it matteo.pennisi@unict.it

