Deep learning theory and application for astrophysics

From machine learning basics to deep learning




Hypotheses and models

Objective

Build a smart thermostat that regulates heating/cooling, predicting what the temperature
will be on a given day.
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Objective

Build a smart thermostat that regulates heating/cooling, predicting what the temperature
will be on a given day.

Challenge

Predicting the temperature is complex:
® Physical laws

® Influencing variables (e.g., external temperature)




Alternative approach

® Historical temperature measurements
® Formulation of a hypothesis

® Estimate a mathematical function
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® Historical temperature measurements
® Formulation of a hypothesis

® Estimate a mathematical function

Machine Learning
Science that recognizes patterns from limited examples.




Importance of examples

% Measured temperature
301 —== Hypothesis
% Predicted temperature
254 mmm—kmmmmmmmmm oo e demmmmmmm e
O 204
15 1
10 4

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Month



Importance of examples

% Measured temperature
301 —== Hypothesis

% Predicted temperature
25 q---broran-pemnnTIT S m LR~ o

e
S~
\\\\
© 20 1 *\
\\
~
\\\
15 1 Sk,
A
N
\\

10

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Month



Importance of examples

% Measured temperature
301 ,*’*__"‘t\ —== Hypothesis
7’ ~ .
/* \t % Predicted temperature
N,
25 * &
/ \\
¥ * :
/ N II
O 20 ’ N 7
I/ N /
7 *\ /*
/
®o *’
S~ »
10 1 R At~

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Month



Supervised machine learning

* Dataset D = {(x1,y1), (%2, ¥2),-- -, (xn, yn) }
® Feature x;: data for prediction

e Target y;: what we want to predict



Supervised machine learning

* Dataset D = {(x1,y1), (%2, ¥2),-- -, (xn, yn) }
® Feature x;: data for prediction

e Target y;: what we want to predict

Objective
Find the hypothesis h:

h(x) = f(x),Vx




Models and hypotheses

® Subset of hypotheses: model

® Family of hypotheses varies with parameters



Models and hypotheses
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Model training



Model training
Measures the error of the model




Model training
Measures the error of the model

¢ Training objective:
® Find parameters 8* that minimize the loss function £

e Formally:
0* = argmin L (D, 0)
0



Solving a machine learning problem



Solving a machine learning problem

1. Model selection

® Suitable model for the problem
® Risks of incorrect choice



Solving a machine learning problem

1. Model selection

® Suitable model for the problem
® Risks of incorrect choice

2. Parameter optimization

® Find parameters for the best hypothesis
® Exploration of the parameter space RY



Generalization

Loss optimization

® |t is not enough for the model to perform well on training data

® We want it to perform well on data never seen during training
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Generalization

Loss optimization

® |t is not enough for the model to perform well on training data

® We want it to perform well on data never seen during training

Generalization capability
Correct predictions on test data

Dataset split

® Training set Dy.,i,: training and optimization

® Test set Diesi: performance evaluation




Training and test loss

® Training loss £(Diain, 0)
® Test loss L(Diest, 0)



Training and test loss

® Training loss £(Diain, 0)
¢ Test loss L(Diest, 0)

Discrepancy
A model that performs well in training does not necessarily perform well in testing
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Underfitting

Definition
Inability to approximate the training data

® High errors on both training and test sets

® Limitation due to the simplicity of the model
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Overfitting

Definition
The model learns the training data too well

b »C(Dtraim 9) ~0
® L(Diest,0) >0




Model choice

Possible approach

® Train different models on Dy yain
® Evaluate performance on Diest

® Choose the model with the best performance on Diest




Model choice

Possible approach

® Train different models on Dyain
® Evaluate performance on Diegt

® Choose the model with the best performance on Diest

Problem

® Test set used for model selection

e “Contaminated” its role in generalization




Validation set

Validation set
Estimate of generalization performance during training, without using the test set
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Estimate of generalization performance during training, without using the test set

New division of the dataset

® Training set: training the parameters

e Validation set: model selection

® Test set: final evaluation




Validation set

Estimate of generalization performance during training, without using the test set

New division of the dataset

® Training set: training the parameters

e Validation set: model selection

® Test set: final evaluation

A\

Correct approach
® Divide D into Dyrain, Dval, Drest

® Train models on Diyain

® Evaluate on D,

® Select the model with the best performance on D,

Evaluate the chosen model on Diegt




Introduction to artificial neural networks

® Peaks of popularity: 1950s-60s and 80s

® Decline: design and training complexity

® Revival: 2000s thanks to technological and algorithmic advances




Artificial neuron

® Observation: x = [xi,...,x4]" 1 O wy b
® Parameters:
x w:
® weights w = [wy, ..., wy]"T € RY ? O :
* bias b € R zy (O)— @—> I
e f: activation function ) . »
. Wq
za (O
z="f(x"w+ b)




Interpretations of the artificial neuron

z=1f(x"w+ b)

Prototypical interpretation
e w: feature prototype
e xTw: measure of similarity
® Similarity threshold: —b




Multi-layer perceptron (MLP)

® Model equipped with multiple layers to approximate non-linear functions
¢ Concatenation of layers: output of one layer becomes input to the next

(Example)




Training a neural network

Objective
Minimize loss function £




Training a neural network

Objective
Minimize loss function £

0 60— Vel

® @: vector of network parameters

T . .
°® Vol = %, g—é, cen g—é] : gradient of the loss with respect to the parameters




Backpropagation

e Algorithm for computing gradients of a neural network
e Efficient and suitable for computer implementation

® Requires that layers are differentiable




Role of the learning rate

e Key hyperparameter in the gradient descent algorithm

® Determines the size of update steps

Choosing the learning rate n

® 7 too small: slow progress, difficulty escaping local minima

® 7 too large: risk of oscillations or divergence




Deep neural networks

Complex data

® Hierarchical and compositional nature

® |mages: pixels — edges — shapes — objects — scenes
® Text: letters — words — sentences — complex meaning

® Hierarchical representations

® |nitial layers: low-level patterns

® Final layers: abstract and complex representations




Convolutional neural networks

Suitable for 2D /3D data analysis

Network layers apply image processing filtering convolutions)
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Convolutional neural networks
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Convolutional neural networks
Representation
Each layer extracts a set of feature maps

- i! -




Convolutional neural networks

Minimal layer configuration

e Convolution operator

® Nonlinear activation




Convolutional neural networks

® Each feature map emphasizes specific visual characteristics

® Computed by aggregating information from previous layers
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® Each “neuron” is computed by filtering a window from the previous feature maps

using a kernel matrix
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Convolutional neural networks

Main parameters

o Kernel size
® |arger size — more context, but more parameters
® Must be tuned to input data
e Stride
® Stride 1: process every pixel
® Stride N: process one pixel every N
® Suitable at high resolution




Convolutional neural networks

Feature map resolution

® Deep layers encode more and more aggregate information

® No need to keep original resolution




Convolutional neural networks

Feature map resolution

® Deep layers encode more and more aggregate information
® No need to keep original resolution

® Max pooling

” i 2 | 4
max pool with 2x2 filters
Se 7 | 8 and stride 2 6|8
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Convolutional neural networks

Basic layer implementation

LAYER




Convolutional neural networks

CNN architecture
® |nitial feature extraction stage

¢ Final fully-connected stage (traditional MLP)

® Task-specific output
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Improve CNN training



Improve CNN training

Dropout

® At training time, randomly disable neurons in fully-connected layers
® Reduces model complexity, help preventing overfitting

® At test time, use full model
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Batch normalization

® Feed batches of samples at a time

® At each layer, standardize feature maps based on batch statistics

® Reduces variations of intermediate data distributions
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Improve CNN training

® At training time, randomly disable neurons in fully-connected layers

® Reduces model complexity, help preventing overfitting

® At test time, use full model

Batch normalization

® Feed batches of samples at a time

® At each layer, standardize feature maps based on batch statistics

® Reduces variations of intermediate data distributions )

Data augmentation

® Create “variations” of input samples

® |ncrease dataset variability, help preventing overfitting

® Examples: random crop, flip, color jitter

.




Convolutional neural networks

Pretrained models

® Adapt public trained models, rather than train from scratch
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® Adapt public trained models, rather than train from scratch

® Example: ResNet models

Pretrained models
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Recurrent neural networks

How to process sequential data?
® Video

® Text
e Audio

® Time series




Recurrent neural networks

Feed-forward neural network




Recurrent neural networks

Output layer (e.g. classification)

Recurrent layer (nonlinear)

Input layer




Recurrent neural networks

“Unrolled” visualization




Recurrent neural networks

hi(t—1)
h,(t—1)

Previous time hs(t—1)

Current time x1(V)
hyi(®)

O h, ()
O h3(t)

x2(t)

x3(t)

x4(1)



Recurrent neural networks

Long-term dependencies

® RNNs store a representation of context

® Based on past information, make predictions on the future
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Recurrent neural networks

Long-term dependencies

® Recent history affects state more than old history

® QOld samples have little impact on future predictions
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LSTM

Introduce a memory mechanism in the cell

® Long: memory enables to retain context information of a long time

Short-term: stored information are dynamically selected based on the current input

e Gates control information flow

Technical insight: improve backpropagation by preventing decreases in loss gradients




LSTM

Standard RNN layer
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Long short-term memory

The cell internally controls:
® when information should be stored in memory
® when information should be removed

® when information should be provided as output




e Single cell state/output
e Single input/forget gate — update gate

hi—1
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Conclusions

® Fundamental ML concepts

e Common deep architectures

New frontiers in astrophysics
® Scalability: tackle massive datasets (e.g., LSST, SKA).

e Knowledge discovery: identify subtle patterns missed by traditional methods.

® Surrogate modeling: accelerate computationally expensive simulations.

Challenges

® |nterpretability: uncover the “black box”
¢ Data scarcity/bias: handling rare phenomena and observational biases.

e Computational resources: training large models can be demanding.




