Deep learning theory and application for astrophysics From machine learning basics to deep learning

Objective

Build a smart thermostat that regulates heating/cooling, predicting what the temperature will be on a given day.

Objective

Build a smart thermostat that regulates heating/cooling, predicting what the temperature will be on a given day.

Challenge

Predicting the temperature is complex:

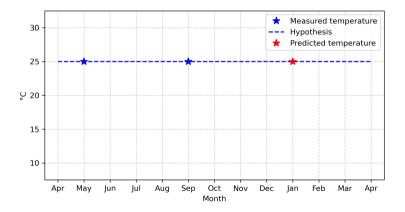
- Physical laws
- Influencing variables (e.g., external temperature)

- Historical temperature measurements
- Formulation of a hypothesis
- Estimate a mathematical function

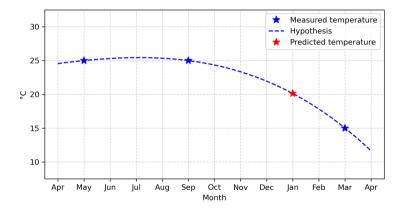
- Historical temperature measurements
- Formulation of a hypothesis
- Estimate a mathematical function

Machine Learning

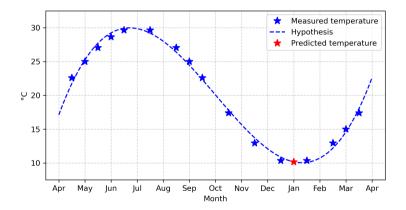
Science that recognizes patterns from limited examples.



Importance of examples



Importance of examples



- Dataset $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- Feature x_i: data for prediction
- **Target** y_i: what we want to predict

- Dataset $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- Feature x_i: data for prediction
- **Target** y_i: what we want to predict

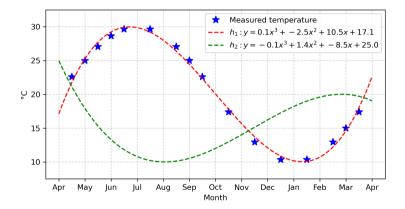
Objective

Find the hypothesis *h*:

 $h(x) \approx f(x), \forall x$

- Subset of hypotheses: model
- Family of hypotheses varies with parameters

Models and hypotheses



Model training

Loss function

Measures the error of the model

Loss function

Measures the error of the model

- Training objective:
 - Find parameters $heta^*$ that minimize the loss function $\mathcal L$
- Formally:

$$oldsymbol{ heta}^{*} = rgmin_{oldsymbol{ heta}} \mathcal{L}\left(\mathcal{D},oldsymbol{ heta}
ight)$$

Solving a machine learning problem

1. Model selection

- Suitable model for the problem
- Risks of incorrect choice

1. Model selection

- Suitable model for the problem
- Risks of incorrect choice

2. Parameter optimization

- Find parameters for the best hypothesis
- Exploration of the parameter space \mathbb{R}^d

Loss optimization

- It is not enough for the model to perform well on training data
- We want it to perform well on data never seen during training

Loss optimization

- It is not enough for the model to perform well on training data
- We want it to perform well on data never seen during training

Generalization capability

Correct predictions on test data

Loss optimization

- It is not enough for the model to perform well on training data
- We want it to perform well on data never seen during training

Generalization capability

Correct predictions on test data

Dataset split

- Training set $\mathcal{D}_{\text{train}}:$ training and optimization
- Test set \mathcal{D}_{test} : performance evaluation

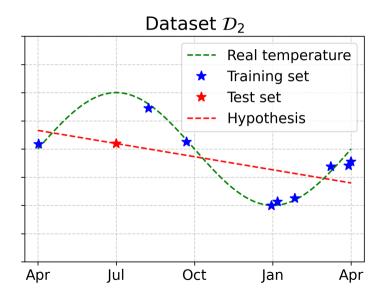
- Training loss $\mathcal{L}(\mathcal{D}_{train}, \theta)$
- Test loss $\mathcal{L}(\mathcal{D}_{test}, \boldsymbol{\theta})$

- Training loss $\mathcal{L}(\mathcal{D}_{train}, \theta)$
- Test loss $\mathcal{L}(\mathcal{D}_{test}, \theta)$

Discrepancy

A model that performs well in training does not necessarily perform well in testing

Underfitting

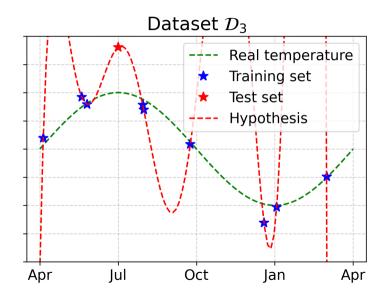


Definition

Inability to approximate the training data

- High errors on both training and test sets
- Limitation due to the simplicity of the model

Overfitting



Definition

The model learns the training data too well

- $\mathcal{L}(\mathcal{D}_{train}, \theta) \approx 0$ $\mathcal{L}(\mathcal{D}_{test}, \theta) \gg 0$

Possible approach

- Train different models on $\mathcal{D}_{\text{train}}$
- Evaluate performance on $\mathcal{D}_{\mathsf{test}}$
- \bullet Choose the model with the best performance on \mathcal{D}_{test}

Possible approach

- \bullet Train different models on $\mathcal{D}_{\text{train}}$
- Evaluate performance on $\mathcal{D}_{\mathsf{test}}$
- \bullet Choose the model with the best performance on \mathcal{D}_{test}

Problem

- Test set used for model selection
- "Contaminated" its role in generalization

Validation set

Estimate of generalization performance during training, without using the test set

Validation set

Estimate of generalization performance during training, without using the test set

New division of the dataset

- Training set: training the parameters
- Validation set: model selection
- Test set: final evaluation

Validation set

Estimate of generalization performance during training, without using the test set

New division of the dataset

- Training set: training the parameters
- Validation set: model selection
- Test set: final evaluation

Correct approach

- Divide \mathcal{D} into \mathcal{D}_{train} , \mathcal{D}_{val} , \mathcal{D}_{test}
- Train models on $\mathcal{D}_{\text{train}}$
- Evaluate on $\mathcal{D}_{\mathsf{val}}$
- Select the model with the best performance on \mathcal{D}_{val}
- Evaluate the chosen model on $\mathcal{D}_{\text{test}}$

History

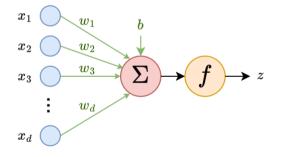
- Peaks of popularity: 1950s-60s and 80s
- Decline: design and training complexity
- Revival: 2000s thanks to technological and algorithmic advances

Definition

- Observation: $\mathbf{x} = [x_1, \dots, x_d]^{\mathsf{T}}$
- Parameters:
 - weights $\mathbf{w} = [w_1, \dots, w_d]^\mathsf{T} \in \mathbb{R}^d$
 - bias $b \in \mathbb{R}$
- *f*: activation function

Neuron output

$$z = f(\mathbf{x}^{\mathsf{T}}\mathbf{w} + b)$$



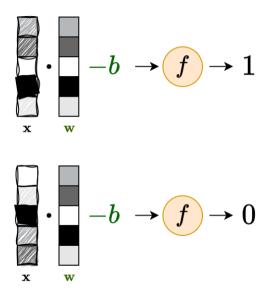
Interpretations of the artificial neuron

Neuron output

$$z = f(\mathbf{x}^{\mathsf{T}}\mathbf{w} + b)$$

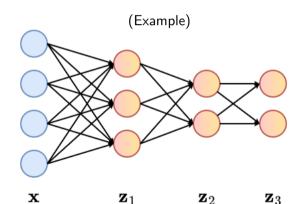
Prototypical interpretation

- w: feature prototype
- **x**^T**w**: measure of similarity
- Similarity threshold: -b



Multi-layer perceptron (MLP)

- Model equipped with multiple layers to approximate non-linear functions
- Concatenation of layers: output of one layer becomes input to the next



Objective

Minimize loss function \mathcal{L}

Objective

Minimize loss function ${\cal L}$

Gradient descent

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}$$

• θ : vector of network parameters

• $\nabla_{\boldsymbol{\theta}} \mathcal{L} = \left[\frac{\partial \mathcal{L}}{\partial \theta_1}, \frac{\partial \mathcal{L}}{\partial \theta_2}, \dots, \frac{\partial \mathcal{L}}{\partial \theta_p}\right]^{\mathsf{T}}$: gradient of the loss with respect to the parameters

Definition

- Algorithm for computing gradients of a neural network
- Efficient and suitable for computer implementation
- Requires that layers are differentiable

- Key hyperparameter in the gradient descent algorithm
- Determines the size of update steps

Choosing the learning rate η

- η too small: slow progress, difficulty escaping local minima
- η too large: risk of oscillations or divergence

Complex data

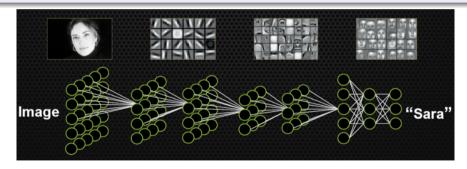
- Hierarchical and compositional nature
 - Images: pixels \rightarrow edges \rightarrow shapes \rightarrow objects \rightarrow scenes
 - Text: letters \rightarrow words \rightarrow sentences \rightarrow complex meaning

Deep neural networks

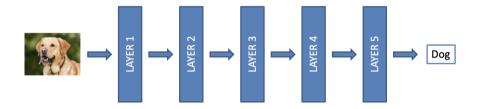
- Hierarchical representations
- Initial layers: low-level patterns
- Final layers: abstract and complex representations

Suitable for 2D/3D data analysis

Network layers apply image processing filtering convolutions)

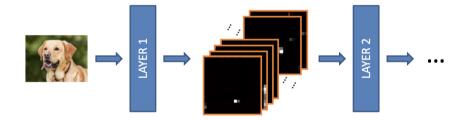


Convolutional neural networks



Representation

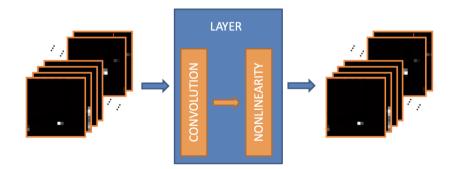
Each layer extracts a set of feature maps



Convolutional neural networks

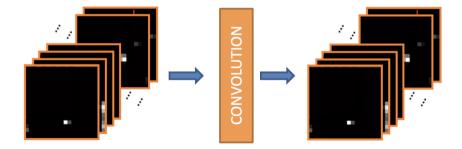
Minimal layer configuration

- Convolution operator
- Nonlinear activation



Convolution

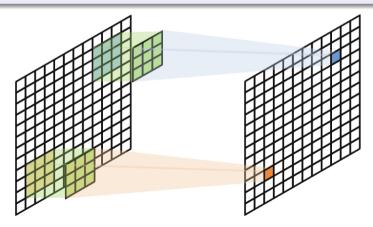
- Each feature map emphasizes specific visual characteristics
- Computed by aggregating information from previous layers



Convolutional neural networks

Convolution

• Each "neuron" is computed by filtering a window from the previous feature maps using a **kernel** matrix



Main parameters

• Kernel size

- Larger size \rightarrow more context, but more parameters
- Must be tuned to input data

• Stride

- Stride 1: process every pixel
- Stride N: process one pixel every N
- Suitable at high resolution

Convolutional neural networks

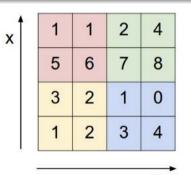
Feature map resolution

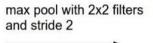
- Deep layers encode more and more aggregate information
- No need to keep original resolution

Convolutional neural networks

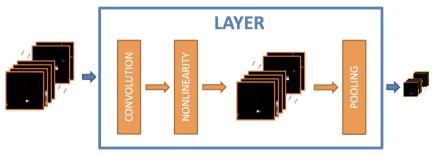
Feature map resolution

- Deep layers encode more and more aggregate information
- No need to keep original resolution
- Max pooling



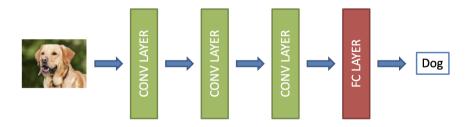


Basic layer implementation



CNN architecture

- Initial feature extraction stage
- Final fully-connected stage (traditional MLP)
- Task-specific output



Dropout

- At training time, randomly disable neurons in fully-connected layers
- Reduces model complexity, help preventing overfitting
- At test time, use full model

Dropout

- At training time, randomly disable neurons in fully-connected layers
- Reduces model complexity, help preventing overfitting
- At test time, use full model

Batch normalization

- Feed **batches** of samples at a time
- At each layer, standardize feature maps based on batch statistics
- Reduces variations of intermediate data distributions

Dropout

- At training time, randomly disable neurons in fully-connected layers
- Reduces model complexity, help preventing overfitting
- At test time, use full model

Batch normalization

- Feed **batches** of samples at a time
- At each layer, standardize feature maps based on batch statistics
- Reduces variations of intermediate data distributions

Data augmentation

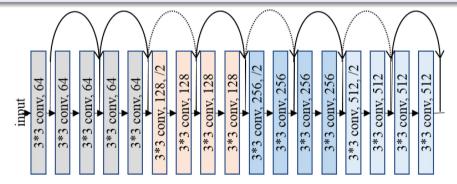
- Create "variations" of input samples
- Increase dataset variability, help preventing overfitting
- Examples: random crop, flip, color jitter

Pretrained models

• Adapt public trained models, rather than train from scratch

Pretrained models

- Adapt public trained models, rather than train from scratch
- Example: **ResNet** models

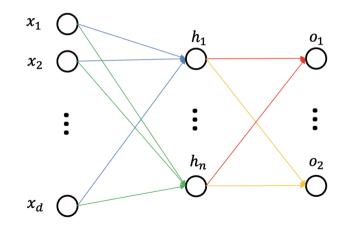


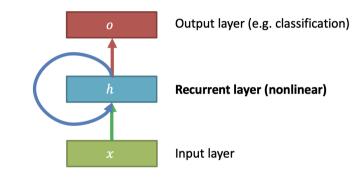
How to process sequential data?

- Video
- Text
- Audio
- Time series

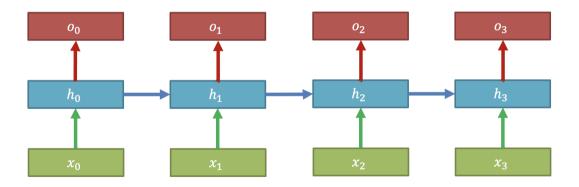
Recurrent neural networks

Feed-forward neural network

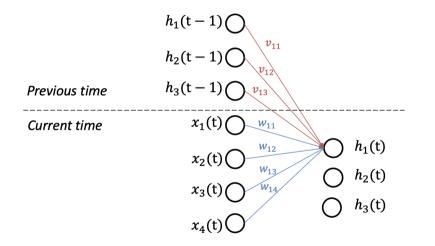




"Unrolled" visualization

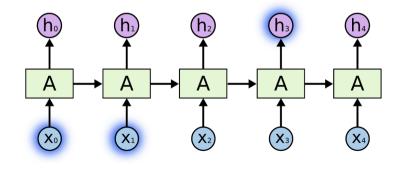


Recurrent neural networks



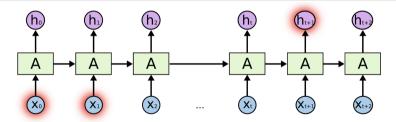
Long-term dependencies

- RNNs store a representation of **context**
- Based on past information, make predictions on the future



Long-term dependencies

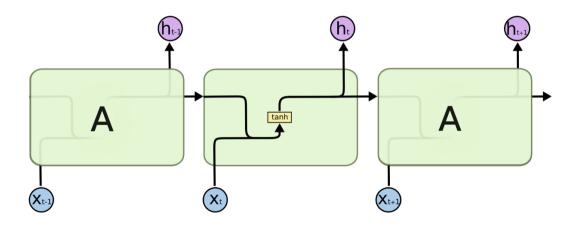
- Recent history affects state more than old history
- Old samples have little impact on future predictions



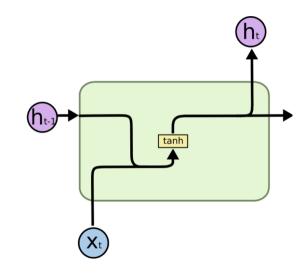
Long short-term memory

- Introduce a memory mechanism in the cell
- Long: memory enables to retain context information of a long time
- Short-term: stored information are dynamically selected based on the current input
- Gates control information flow
- Technical insight: improve backpropagation by preventing decreases in loss gradients

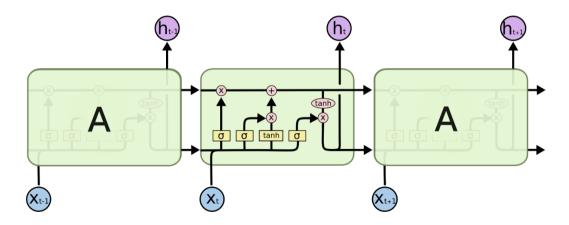
Standard RNN layer



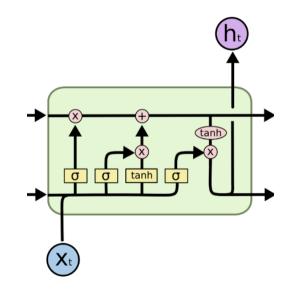
LSTM



LSTM layer



LSTM



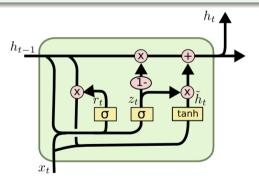
Long short-term memory

The cell internally controls:

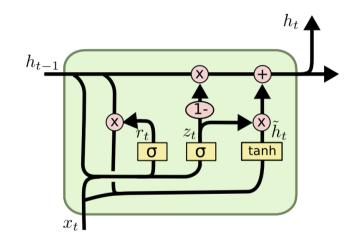
- when information should be stored in memory
- when information should be removed
- when information should be provided as output

Gated recurrent unit

- Single cell state/output
- Single input/forget gate \rightarrow **update** gate



GRU



Recap

- Fundamental ML concepts
- Common deep architectures

Recap

- Fundamental ML concepts
- Common deep architectures

New frontiers in astrophysics

- Scalability: tackle massive datasets (e.g., LSST, SKA).
- Knowledge discovery: identify subtle patterns missed by traditional methods.
- Surrogate modeling: accelerate computationally expensive simulations.

Recap

- Fundamental ML concepts
- Common deep architectures

New frontiers in astrophysics

- Scalability: tackle massive datasets (e.g., LSST, SKA).
- Knowledge discovery: identify subtle patterns missed by traditional methods.
- Surrogate modeling: accelerate computationally expensive simulations.

Challenges

- Interpretability: uncover the "black box"
- Data scarcity/bias: handling rare phenomena and observational biases.
- Computational resources: training large models can be demanding.