
Deep learning theory and application for astrophysics
From machine learning basics to deep learning



Hypotheses and models

Objective

Build a smart thermostat that regulates heating/cooling, predicting what the temperature
will be on a given day.

Challenge

Predicting the temperature is complex:

• Physical laws

• Influencing variables (e.g., external temperature)
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Alternative approach

• Historical temperature measurements

• Formulation of a hypothesis

• Estimate a mathematical function

Machine Learning

Science that recognizes patterns from limited examples.
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Supervised machine learning

• Dataset D = {(x1, y1), (x2, y2), . . . , (xN , yN)}
• Feature xi : data for prediction

• Target yi : what we want to predict

Objective

Find the hypothesis h:
h(x) ≈ f (x),∀x
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Models and hypotheses

• Subset of hypotheses: model

• Family of hypotheses varies with parameters



Models and hypotheses



Model training

Loss function

Measures the error of the model

• Training objective:
• Find parameters θ∗ that minimize the loss function L

• Formally:
θ∗ = argmin

θ
L (D,θ)
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Solving a machine learning problem

1. Model selection
• Suitable model for the problem
• Risks of incorrect choice

2. Parameter optimization
• Find parameters for the best hypothesis
• Exploration of the parameter space Rd
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Generalization

Loss optimization

• It is not enough for the model to perform well on training data

• We want it to perform well on data never seen during training

Generalization capability

Correct predictions on test data

Dataset split

• Training set Dtrain: training and optimization

• Test set Dtest: performance evaluation
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Training and test loss

• Training loss L(Dtrain,θ)

• Test loss L(Dtest,θ)

Discrepancy

A model that performs well in training does not necessarily perform well in testing
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Underfitting

Definition

Inability to approximate the training data

• High errors on both training and test sets

• Limitation due to the simplicity of the model



Overfitting



Overfitting

Definition

The model learns the training data too well

• L(Dtrain,θ) ≈ 0

• L(Dtest,θ)≫ 0



Model choice

Possible approach

• Train different models on Dtrain

• Evaluate performance on Dtest

• Choose the model with the best performance on Dtest

Problem
• Test set used for model selection

• “Contaminated” its role in generalization
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Validation set

Validation set

Estimate of generalization performance during training, without using the test set

New division of the dataset
• Training set: training the parameters

• Validation set: model selection

• Test set: final evaluation

Correct approach

• Divide D into Dtrain, Dval, Dtest

• Train models on Dtrain

• Evaluate on Dval

• Select the model with the best performance on Dval

• Evaluate the chosen model on Dtest
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Introduction to artificial neural networks

History

• Peaks of popularity: 1950s-60s and 80s

• Decline: design and training complexity

• Revival: 2000s thanks to technological and algorithmic advances



Artificial neuron

Definition

• Observation: x = [x1, . . . , xd ]
⊺

• Parameters:
• weights w = [w1, . . . ,wd ]

⊺ ∈ Rd

• bias b ∈ R
• f : activation function

Neuron output

z = f (x⊺w + b)



Interpretations of the artificial neuron

Neuron output

z = f (x⊺w + b)

Prototypical interpretation

• w: feature prototype

• x⊺w: measure of similarity

• Similarity threshold: −b



Multi-layer perceptron (MLP)

• Model equipped with multiple layers to approximate non-linear functions
• Concatenation of layers: output of one layer becomes input to the next

(Example)



Training a neural network

Objective

Minimize loss function L

Gradient descent

θ ← θ − η∇θL

• θ: vector of network parameters

• ∇θL =
[
∂L
∂θ1

, ∂L
∂θ2

, . . . , ∂L
∂θp

]⊺
: gradient of the loss with respect to the parameters
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Backpropagation

Definition
• Algorithm for computing gradients of a neural network

• Efficient and suitable for computer implementation

• Requires that layers are differentiable



Role of the learning rate

• Key hyperparameter in the gradient descent algorithm

• Determines the size of update steps

Choosing the learning rate η

• η too small: slow progress, difficulty escaping local minima

• η too large: risk of oscillations or divergence



Deep neural networks

Complex data

• Hierarchical and compositional nature
• Images: pixels → edges → shapes → objects → scenes
• Text: letters → words → sentences → complex meaning

Deep neural networks

• Hierarchical representations

• Initial layers: low-level patterns

• Final layers: abstract and complex representations



Convolutional neural networks

Suitable for 2D/3D data analysis

Network layers apply image processing filtering convolutions)



Convolutional neural networks



Convolutional neural networks

Representation

Each layer extracts a set of feature maps



Convolutional neural networks

Minimal layer configuration

• Convolution operator

• Nonlinear activation



Convolutional neural networks

Convolution
• Each feature map emphasizes specific visual characteristics

• Computed by aggregating information from previous layers



Convolutional neural networks

Convolution
• Each “neuron” is computed by filtering a window from the previous feature maps
using a kernel matrix



Convolutional neural networks

Main parameters

• Kernel size
• Larger size → more context, but more parameters
• Must be tuned to input data

• Stride
• Stride 1: process every pixel
• Stride N: process one pixel every N
• Suitable at high resolution



Convolutional neural networks

Feature map resolution

• Deep layers encode more and more aggregate information

• No need to keep original resolution

• Max pooling
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Convolutional neural networks

Basic layer implementation



Convolutional neural networks

CNN architecture
• Initial feature extraction stage

• Final fully-connected stage (traditional MLP)

• Task-specific output



Improve CNN training

Dropout

• At training time, randomly disable neurons in fully-connected layers

• Reduces model complexity, help preventing overfitting

• At test time, use full model

Batch normalization
• Feed batches of samples at a time

• At each layer, standardize feature maps based on batch statistics

• Reduces variations of intermediate data distributions

Data augmentation

• Create “variations” of input samples

• Increase dataset variability, help preventing overfitting

• Examples: random crop, flip, color jitter
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Convolutional neural networks

Pretrained models
• Adapt public trained models, rather than train from scratch

• Example: ResNet models
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Recurrent neural networks

How to process sequential data?

• Video

• Text

• Audio

• Time series



Recurrent neural networks

Feed-forward neural network



Recurrent neural networks



Recurrent neural networks

“Unrolled” visualization



Recurrent neural networks



Recurrent neural networks

Long-term dependencies

• RNNs store a representation of context

• Based on past information, make predictions on the future



Recurrent neural networks

Long-term dependencies

• Recent history affects state more than old history

• Old samples have little impact on future predictions



LSTM

Long short-term memory

• Introduce a memory mechanism in the cell

• Long: memory enables to retain context information of a long time

• Short-term: stored information are dynamically selected based on the current input

• Gates control information flow

• Technical insight: improve backpropagation by preventing decreases in loss gradients



LSTM

Standard RNN layer
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LSTM

LSTM layer



LSTM



LSTM

Long short-term memory

The cell internally controls:

• when information should be stored in memory

• when information should be removed

• when information should be provided as output



GRU

Gated recurrent unit
• Single cell state/output

• Single input/forget gate → update gate



GRU



Conclusions

Recap

• Fundamental ML concepts

• Common deep architectures

New frontiers in astrophysics

• Scalability: tackle massive datasets (e.g., LSST, SKA).

• Knowledge discovery: identify subtle patterns missed by traditional methods.

• Surrogate modeling: accelerate computationally expensive simulations.

Challenges

• Interpretability: uncover the “black box”

• Data scarcity/bias: handling rare phenomena and observational biases.

• Computational resources: training large models can be demanding.
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