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Abstract—Machine Learning (ML) serves as a general-
purpose, highly adaptable, and versatile framework for inves-
tigating complex systems across domains. However, the resulting
computational resource demands, in terms of the number of
parameters and the volume of data required to train ML models,
can be high, often prohibitive. This is the case in astrophysics,
where multimedia space data streams usually have to be analyzed.
In this context, quantum computing emerges as a compelling
and promising alternative, offering the potential to address these
challenges in a feasible way. Specifically, a four-step quantum
machine learning (QML) workflow is proposed encompassing
data encoding, quantum circuit design, model training and
evaluation. Then, focusing on the data encoding step, different
techniques and models are investigated within a case study
centered on the Gamma-Ray Bursts (GRB) signal detection in
the astrophysics domain. The results thus obtained demonstrate
the effectiveness of QML in astrophysics, highlighting the critical
role of data encoding, which significantly affects the QML model
performance.

Index Terms—Data Encoding, Kernel Methods, Quantum Fin-
gerprinting, Data Reuploading, Gamma-Ray Bursts.
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traditional statistical methods struggle to handle. Modern
astronomical surveys generate extensive and complex data
streams, necessitating automated classification, anomaly de-
tection, and predictive modeling. ML techniques have been
widely adopted in tasks such as galaxy classification, transient
detection, and cosmological parameter estimation, demonstrat-
ing significant improvements in accuracy and efficiency [1],
[2]. While ML has proven effective, astrophysical data present
additional challenges beyond sheer volume. ML, indeed, well-
suits astrophysical research due to the confluence of several
factors: 1) astrophysical datasets are characterized by their
high dimensionality and volume, often exceeding the capacity
of traditional statistical methods; i1) astrophysical phenomena
are frequently governed by intricate physical processes that
generate complex, non-Gaussian statistical distributions; 1ii)
the inherent noise and incompleteness of astronomical ob-
servations, arising from instrumental limitations and observa-
tional constraints, require robust data imputation, filtering and

Accepted for publication in IEEE QSW 2025 conference
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Cosmological simulations describing the evolution of density perturbations of a self-gravitating
collisionless Dark Matter (DM) fluid in an expanding background, provide a powerful tool to follow
the formation of cosmic structures over wide dynamic ranges. The most widely adopted approach,
based on the N-body discretization of the collisionless Vlasov-Poisson (VP) equations, is hampered
by an unfavourable scaling when simulating the wide range of scales needed to cover at the same
time the formation of single galaxies and of the largest cosmic structures. On the other hand,
the dynamics described by the VP equations is limited by the rapid increase of the number of
resolution elements (grid points and/or particles) which is required to simulate an ever growing
range of scales. Recent studies showed an interesting mapping of the 6-dimensional+1 (6D + 1) VP
problem into a more amenable 3D + 1 non-linear Schrodinger-Poisson (SP) problem for simulating
the evolution of DM perturbations. This opens up the possibility of improving the scaling of time
propagation simulations using quantum computing. In this paper, we introduce a quantum algorithm
for simulating the Schrodinger-Poisson (SP) equation by adapting a variational real-time evolution

arXiv:2307.06032 , Published in Physical Review Research, March 2024
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Quantum Convolutional Neural Networks for the detection of
Gamma-Ray Bursts in the AGILE space mission data

A. Rizzo,! N. Parmiggiani,?, A. Bulgarelli 2, A. Macaluso?, V. Fioretti, L.
CastaldiniZ, A. Di Piano*2, G. Panebianco>2, C. Pittori®’, M. Tavani®, C.
Sartori’, C. Burigana'®, V. Cardone®, F. Farsian!!, M. Meneghetti?, G.
Murante!'2, R. Scaramella®, F. Schillird!!, V. Testa® and T. Trombetti'?

Abstract. Quantum computing represents a cutting-edge frontier in artificial intel-
ligence. It makes use of hybrid quantum-classical computation which tries to leverage
quantum mechanic principles that allow us to use a different approach to deep learning
classification problems. The work presented here falls within the context of the AGILE
space mission, launched in 2007 by the Italian Space Agency. We implement differ-
ent Quantum Convolutional Neural Networks (QCNN) that analyze data acquired by
the instruments onboard AGILE to detect Gamma-Ray Bursts from sky maps or light
curves. We use several frameworks such as TensorFlow-Quantum, Qiskit and Penny-
Lane to simulate a quantum computer. We achieved an accuracy of 95.1% on sky maps
with QCNNSs, while the classical counterpart achieved 98.8% on the same data, using
however hundreds of thousands more parameters.

arXiv:2404.14133 , Published in proceedings of the ADASS XXXIII (2023) conference
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Abstract

An Amplitude-Encoded Quantum Genetic Algorithm (AEQGA) has been developed to minimize y? functions of different cosmo-
logical probes (Supernovae Type Ia, Baryon Acoustic Oscillations, Cosmic Microwave Background Radiation), to find the best-fit
value for two cosmological parameters, namely the Hubble Constant and the density matter content of the Universe today. Our main
aim is to pave the way to testing the adoption of quantum optimization in the inference of the cosmological parameters that describe
the universe evolution. AEQGA computes the merit function classically, and then uses a quantum circuit to entangle the population
and perform crossover and mutation operations. The results show consistency with the isocontours of the objective functions. We
then tested the general behavior of AEQGA as a function of its hyperparameters and compared it with a second quantum genetic
algorithm found in the literature as well as with classical algorithms, finding consistent results.

Submitted to Astronomy & Computing
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Quantum Markov Chain Monte Carlo for
Cosmological Functions

Abstract—We here present an implementation of Quantum
Computing for a Markov Chain Monte Carlo method with
an application to cosmological functions, to derive posterior
probabilities of given likelihoods and chi-squared of cosmological
probes such as Supernovae Type Ia and the Cosmic Microwave
Background radiation. The algorithm proposes new steps in
the parameter space via a quantum circuit whose resulting
statevector provides the components of the shift vector. The
proposed point is accepted or rejected via the Metropolis-
Hastings acceptance method evaluated classically. The advantage
of taking the steps via our quantum approach is in the fact that
the step size and direction changes in a way independent of the
evolution of the chain, thus ideally avoiding the presence of local
minima. Gaussian and Uniform priors have also been defined.
This algorithm has been tested for both a test function and two
cosmological ones with real data. The results are consistent with
analyses performed with classical methods. The final goal is to
generalize this algorithm to many dimensions, thus testing its
application to complex cosmological computations, looking for a
possible quantum advantage for a very relevant problem for the
cosmological community.

Index Terms—I1.4.1.c Quantization, G.3.e Markov processes,
G.1.2.g Minimax approximation and algorithms.

review of quantum algorithms presented in the literature, see
[12], [13].

Among the different scientific fields in which interesting
applications of QC could be found, astrophysics and cosmol-
ogy are the ones we focus on. Indeed, we live in an epoch of
astronomical data richness, for which vast, high-quality data
catalogs are at the disposal of the astronomical community, and
strategies for efficiently searching and analyzing these datasets
are becoming mandatory [14], [15]. Examples of missions and
instruments that have given us such remarkable datasets are
Gaia [16], the Sloan Digital Sky Survey (SDSS, [17]), and the
Very Large Telescope (VLT, [18]). These will be accompanied
by the data provided by novel instruments like Euclid [19]-
[21], and the Vera C. Rubin Observatory [22]. Efficient and
fast analyses have been performed with novel strategies like
machine learning models [23]-[26] as well as the redesign
of algorithms to employ high-performance computing (HPC)
hardware as efficiently as possible. The idea is to understand
if QC can be used in this context as well, finding possible
applications in which it can bring advantages to classical

Submitted to IEEE Conference on Quantum Artificial Intelligence, 2025
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GAMMA RAY BURSTS

» Gamma-ray bursts (GRBs) are extremely energetic explosions that occur in distant
galaxies, emitting intense bursts of gamma rays, the most energetic form of light.

» They are typically classified into two types: short-duration GRBs, lasting less than 2
seconds, likely caused by the merger of neutron stars, and long-duration GRBs, lasting
over 2 seconds, usually associated with the collapse of massive stars into black holes.

» GRBs are among the brightest and most powerful events in the universe, often
followed by an afterglow that can be observed in other wavelengths like X-rays, visible
light, and radio waves.




CHERENKOV TELESCOPES ARRAY OBSERVATORY (CTAQ)

» The Cherenkov Telescope Array Observatory (CTAO) will be the world's most
powerful ground-based observatory for very high-energy gamma-ray astronomy.
The facility will be equipped with real-time analysis software that automatically
generates science alerts and analyzes ongoing observational data in real-time.
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SETTING THE STAGE FOR QUANTUM MACHINE LEARNING

Superposition

» Qubit : The unit of information for QC 0) 1)
0= () =l +ail
1

» Measurement: an operation that alters
the system and is a non-deterministic
process (unlike classical computation).

» The basis of Quantum computing: BeII state
Superposition: the state with no-null
probability of being in both the state |0)
and |1). E/
Entangelment: the correlation of two
qubits. {‘ .} [‘ .J

)
~—

» Quantum gate: transformations (matrices) H
which can be used to manipulate the IE/ \\EI
qubits. They should have these properties: ] [

Linearity, Unitarity and Reversibility { ‘

o




QUANTUM MACHINE LEARNING (QML)

» Combines concepts from quantum
computing and machine learning to
develop algorithms capable of
exploiting quantum phenomena to om
enhance learning tasks. o

Machine
Learning

Quantum
Machine
Learning

» Quantum computing uses qubits, which
unlike classical bits, can be in
superposition states of 0 and 1 data processing device
simultaneously. This allows to perform

multiple computations simultaneously,
potentially leading to exponential
speedups for certain problems.

» QML faces challenges like fault-tolerant
hardware, efficient algorithms, and
integrating quantum with classical
systems.

data generating system

C - classical, Q) - quantum




DATASET

» Simulated Dataset are composed by two classes: GRB Signal and
background noise, leading to a binary classification problem

» Light Curve as time series: 440 GRBs and background noise as training set,

160 for the test set.

» The x-axis represents the time window with a certain Binnig.

» The y-axis represents the count rate of photons detected by ACS over time.
The presence of high and structured spikes can be used to detect GRBs.
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IMPLEMENTED ARCHITECTURE
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BENCHMARKING PARAMETERS

Parameters related QCNN
architecture and its
performance in the case of
binary classification:

e Number of Qubits

® Number of data
reuploading layers

e Data encoding type
e Training dataset size

® Training Epochs

Variable Physical Parameters
related to the signal and
background noise to check the
performance of the Model:

e LC length

@ Binning

e Offset for the event

e Model of the GRB

@ Normalization factor of the GRB

® Decay time scale ( in case of
exponential)



RESULTS

» Model performance in case of 440 light curves training set and 160 for the test set

» By increasing the number of Qubits the accuracy increases but with the price of
increasing of training time

» Decreasing the number of Qubits less than a threshold causes model doesn’t get
the substructure of the data

» Classical CNN is a simple network composed of 2 Conv1D and a pooling layer

F.Farsian et al, 2025



RESULTS

e Comparison of amplitude encoding and the data re-uploading method

e The accuracy dropped when using amplitude encoding, indicating its
limitations in this context.

e Advantage of Data Re-Uploading: The data re-uploading method enhances
the expressiveness of the variational quantum circuit by embedding input data
at multiple stages, enabling more complex transformations.

e Improved Representational Power: This method is particularly well-suited for
high-dimensional or complex data, making it valuable for QML applications.

F.Farsian et al, 2025



RESULTS

e Test on Sample complexity—the ability to perform tasks with fewer labeled training
samples.

e Quantum Generalization Advantage: Quantum algorithms are theoretically expected
to generalize better than classical models by leveraging superposition and
entanglement to process information more efficiently.

e Evaluation with Limited Data: The performance was tested under data-scarce
conditions (only 20 training sample) to explore its potential advantage in generalization

e Astrophysical Significance: This result highlights the practical advantage of QCNNs in
astrophysics, where labeled data is often scarce due to the rarity of observed
phenomena.

F.Farsian et al, 2025



RESULTS

e Evaluation on Real Data: The QCNN was tested on real observational
data from the AGILE satellite, consisting of 43 GRB samples and 101
background samples, introducing a class imbalance.

® The dataset was split into training (70%), test (20%), and validation (10%)

sets. Details on its preparation can be found in previous work [Rizzo et al.
2024].

e Performance Comparison:

F.Farsian et al, 2025



CONCLUSION

One of the first implemented Quantum Convolutional Neural Network
(QCNN) to analyze astrophysical data, specifically to detect the GRB signal.

More than 50 types of architecture and different data encoding has been
tested

The performance of QCNN in terms of accuracy is equal or better than the
classical CNN in a specific case.

Reduction in parameters of the model underlines the efficiency and power
of QML algorithms.

Generalization power of QML in case of very few training dataset and its
advantage respect to classical ML. In this case we have only 20 light curves
as the training set

In this study we reach Quantum Advantage in terms of sample complexity.
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DATA ENCODING METHODS

For encoding (embedding), we take a classical data point, x, and encode
it by applying a set of gate parameters in the quantum circuit.

There are different types of encoding the data:

> Basic encoding

> Angle encoding

v

Amplitude encoding

v

Data Reuploading

v

QuAM (Quantum Associated Memory)

v

QRAM (Quantum Random Access Memory)



PARAMETRISED QUANTUM CIRCUIT (PQC)

PQC bridge quantum and classical computing: the quantum
computer estimates a quantity, while the classical computer optimizes

the parameters. This process iterates, continually refining the
quantum state.

They consist of three ingredients:

» Preparation of a fixed initial state (e.q., the |0>—
vacuum state or the zero state).
» A quantum circuit U(0), parameterized by a set L Cost.

of free parameters 6 A
£(6) = (0|U1(6)BU(6)|0)

» Measurement of an observable B at the output.

trained by a classical optimization algorithm, by
querying to the quantum device.



WHICH PLATFORM T0 USE

» Qiskit is an open-source quantum
computing software development
framework created by IBM

» Provides a way to interact with
quantum computers through a high-
level programming language

» Offers a comprehensive set of tools
and libraries, including simulators for
testing quantum algorithms, access to
real quantum hardware, and a variety
of algorithms and techniques for
guantum information processing.

» IBM offers access to Superconducting
qubit devices

https://qiskit.org/

https://quantum-computing.ibm.com/
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AMPLITUDE ENCODING

» The data is encoded into the /
amplitudes of a gquantum state.

» This encoding requires log2 X f\>
(n) qubits to represent an n-

dimensional data point. \_
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DATA REUPLOADING

» Data re-uploading addresses the limitations imposed by the no-
cloning theorem.

» It adds extra layers or repetitions of quantum gates within a
variational quantum circuit, enabling more complex transformations

of the quantum state.

» This method enhances the circuit's expressiveness, improving its
ability to capture intricate patterns in data for machine learning tasks.
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AGILE SPACE MISSION

» AGILE is a space mission launched from the Italian Space Agency (ASI) in 2007 to

study X-ray and gamma-ray phenomena through data acquired by different
instruments onboard the satellite.

» The AntiCoincidence System (ACS) is part of the Gamma-Ray Imaging Detector

(GRID). It is composed of five panels and it can detect photons. Each ACS panel
count rate constitutes a time series.

» The AGILE-GRID RTA pipeline generates count maps, exposure maps and upper
limit maps.




