Cosmology from Large Scale full-shape analyses combining 2PCF and 3PCF Massimo Guidi, PostDoc at Dipartimento di Fisica e Astronomia Alma Mater Studiorum - Università di Bologna, massimo.guidi6@unibo.it In collaboration with: M. Moresco, K. Nagainis, A. Labate, L. Cavazzini, B. Metcalf (UniBo); A. Veropalumbo, A. Farina, E. Branchini, I. Risso, B. Granett (INAF OABr, INFN-Genova, UniGE) # Redshift surveys provide a description of the Large Scale Structure of the Universe Large observational campaigns (such as SDSS, BOSS, DESI, Euclid, ...) aim to unveil the Dark Universe: - Dark energy - Dark matter - Beyond LCDM (Inflation, General Relativity, Neutrinos, ...) Credits: Institute for Computational Cosmology of Durham # Baryonic acoustic oscillations # How to extract cosmological information from redshift surveys? Credits: Institute for Computational Cosmology of Durham Baryonic acoustic oscillations after decoupling act as a standard ruler during the expansion history... ...like an expanding wave with an associated frequency # Redshift space distortions # How to extract cosmological information from redshift surveys? When converting redshifts to physical distances, neglecting the effect of peculiar velocities gives raise to a distortion of clustering signal along the line of sight introducing observational **anisotropies**... Credits: Institute for Computational Cosmology of Durham ...degrading the quality of extraction of information from the BAO peak, but adding extra information depending on the growth factor of cosmic structures! # Redshift space distortions How to extract cosmological information from redshift surveys? Credits: Institute for Computational Cosmology of Durham **Template fitting:** Alcock-Paczynski parameters (BAO) + growth factor (RSD) Full-shape: direct sampling of the posterior distribution of cosmological parameters by fitting the shape dependance on cosmological parameters themselves # Correlation functions - Two-Point Correlation Function (2PCF) or Power spectrum Probability of finding pairs of galaxies at a given r with respect to a random distribution: $dP = n^2[1 + \xi(r)]dV_1dV_2$ 2PCF estimator: $$\xi(r) = \frac{DD - 2DR + RR}{RR}$$ Landy & Szalay (1993) Peebles (1993) $$\xi(r) = \frac{DD}{RR} - 1$$ For a Gaussian Random Field, two-point statistics are enough to completely describe the distribution... > ... but this is far from the large scale structure of the universe! # Higher-order correlation functions Slices of thickness 50 Mpc/h of a mock galaxy distributions for SDSS (left) and a realisation of a Rayleigh-Lèvy flight (right) Sefusatti & Scoccimarro, 2005 ### Non-Gaussianity: - Nonlinear *gravitational* evolution - Nonlinear relation between luminous tracers and dark matter perturbation (galaxy biasing) - Primordial Non-Gaussianity # Correlation function - Three-Point Correlation Function (3PCF) or Bispectrum Probability of finding **triplets** of galaxies at a given *triangle* with respect to a random distribution: $dP = n^3[1 + \xi(r_{12}) + \xi(r_{13}) + \xi(r_{23}) + \xi(r_{12}, r_{13}, r_{23})]dV_1dV_2dV_3$ 3PCF estimator: $\zeta(r_{12}, r_{13}, r_{23}) = \frac{DDD - 3DDR + 3DRR - RRR}{RRR}$ ## Spherical Harmonic Decomposition: Slepian & Eisenstein (2015, 2017) $$\zeta(r_{12}, r_{13}, r_{23}) = \sum_{0}^{\ell_{\text{max}}} \zeta_{\ell}(r_{12}, r_{13}) \mathcal{L}(\hat{r}_{12} \cdot \hat{r}_{13})$$ $$\zeta_{\ell}(r_{12}, r_{13}) = \frac{DDD_{\ell} - 3DDR_{\ell} + 3DRR_{\ell} - RRR_{\ell}}{RRR_{0}}$$ # Correlation function - 3PCF or Bispectrum Probability of finding triplets of galaxies at a given triangle with respect to a random distribution: $dP = n^3[1 + \xi(r_{12}) + \xi(r_{13}) + \xi(r_{23}) + \xi(r_{12}, r_{13}, r_{23})]dV_1dV_2dV_3$ ## Configuration space ## Fourier space #### Estimator: - Now feasible thanks to Spherical Harmonic Decomposition - Survey footprint: just random distribution needed #### Modelling (2PCF + 3PCF): - Template fitting (BAO, BAO + RSD), computational intensive! - No full-shape yet! Gap with Fourier space #### Estimator: Survey footprint requires window function to model mode coupling Accessible modeling: template fitting and full-shape (tree-level B) # Recap Extraction of cosmological information from redshift survey Probes: BAO, RSD Methods: Template fitting, Full-shape Higher-order: important as they add constraining power, configuration space data better deal with systematics due to the footprint, but both modelling and measuring have a high computational cost 3PCF multipoles (isotropic or anisotropic) # A squeezed isosceles triangle BAO configuration in the small-scale regime: One-loop (red and green) and tree-level 3PCF matter models compared with measurements from the DEMNUni N-Body simulation Bispectrum multipoles (isotropic or anisotropic), template fitting (2023) Reaching the small-scale regime 2D-FFTLog (2D Bessel Transform) Some related works: Umeh et al, 2020 Veropalumbo et al, 2022 Guidi et al, 2023 Farina et al, 2024 Pugno et al, 2024 3PCF multipoles (isotropic or anisotropic), (BAO + RSD) ## First higher-order full-shape analysis in configuration space in the literature #### Euclid preparation. Full-shape modelling of 2-point and 3-point correlation functions in real space ``` Euclid Collaboration: M. Guidi^{*1,2}, A. Veropalumbo^{3,4,5}, A. Pugno⁶, M. Moresco^{7,2}, E. Sefusatti^{8,9,10}, C. Porciani⁶, E. Branchini^{5, 4, 3}, M.-A. Breton^{11, 12, 13}, B. Camacho Quevedo^{9, 14, 8, 15, 11}, M. Crocce^{11, 15}, S. de la Torre¹⁶, V. Desjacques¹⁷, A. Eggemeier⁶, A. Farina^{5,3,4}, M. Kärcher^{16,18,19}, D. Linde²⁰, M. Marinucci^{21,22}, A. Moradinezhad Dizgah²³, C. Moretti^{14, 24, 8, 9, 10}, K. Pardede²⁰, A. Pezzotta^{25, 26}, E. Sarpa^{14, 24, 10}, A. Amara²⁷, S. Andreon³, N. Auricchio², C. Baccigalupi^{9,8,10,14}, D. Bagot²⁸, M. Baldi^{1,2,29}, S. Bardelli², P. Battaglia², A. Biviano^{8,9}, M. Brescia^{30,31}, S. Camera^{32,33,34}, G. Cañas-Herrera^{35,36,37}, V. Capobianco³⁴, C. Carbone³⁸ V. F. Cardone^{39, 40}, J. Carretero^{41, 42}, M. Castellano³⁹, G. Castignani², S. Cavuoti^{31, 43}, K. C. Chambers⁴⁴, A. Cimatti⁴⁵ C. Colodro-Conde⁴⁶, G. Congedo⁴⁷, L. Conversi^{48, 49}, Y. Copin⁵⁰, F. Courbin^{51, 52}, H. M. Courtois⁵³, A. Da Silva^{54, 55}, H. Degaudenzi⁵⁶, G. De Lucia⁸, H. Dole⁵⁷, M. Douspis⁵⁷, F. Dubath⁵⁶, X. Dupac⁴⁹, S. Dusini²², S. Escoffier⁵⁸, M. Farina⁵⁹, R. Farinelli², F. Faustini^{39,60}, S. Ferriol⁵⁰, F. Finelli^{2,61}, P. Fosalba^{15,11}, S. Fotopoulou⁶², M. Frailis⁸, E. Franceschi², M. Fumana³⁸, S. Galeotta⁸, B. Gillis⁴⁷, C. Giocoli^{2,29}, J. Gracia-Carpio²⁶, A. Grazian⁶³, F. Grupp^{26,64} L. Guzzo^{19, 3, 65}, S. V. H. Haugan⁶⁶, W. Holmes⁶⁷, F. Hormuth⁶⁸, A. Hornstrup^{69, 70}, K. Jahnke⁷¹, M. Jhabvala⁷² B. Joachimi⁷³, E. Keihänen⁷⁴, S. Kermiche⁵⁸, A. Kiessling⁶⁷, B. Kubik⁵⁰, M. Kümmel⁶⁴, M. Kunz⁷⁵, H. Kurki-Suonio^{76,77}, A. M. C. Le Brun⁷⁸, S. Ligori³⁴, P. B. Lilje⁶⁶, V. Lindholm^{76,77}, I. Lloro⁷⁹, G. Mainetti⁸⁰, D. Maino^{19, 38, 65}, E. Maiorano², O. Mansutti⁸, S. Marcin⁸¹, O. Marggraf⁶, K. Markovic⁶⁷, M. Martinelli^{39, 40} N. Martinet¹⁶, F. Marulli^{7,2,29}, R. Massey⁸², E. Medinaceli², S. Mei^{83,84}, M. Melchior⁸⁵, Y. Mellier^{86,87} M. Meneghetti^{2,29}, E. Merlin³⁹, G. Meylan⁸⁸, A. Mora⁸⁹, B. Morin¹³, L. Moscardini^{7,2,29}, E. Munari^{8,9}, C. Neissner^{90, 42}, S.-M. Niemi³⁵, C. Padilla⁹⁰, S. Paltani⁵⁶, F. Pasian⁸, K. Pedersen⁹¹, W. J. Percival^{92, 93, 94} V. Pettorino³⁵, S. Pires¹³, G. Polenta⁶⁰, M. Poncet²⁸, L. A. Popa⁹⁵, F. Raison²⁶, R. Rebolo^{46, 96, 97}, A. Renzi^{21, 22}, J. Rhodes⁶⁷, G. Riccio³¹, E. Romelli⁸, M. Roncarelli², R. Saglia^{64, 26}, Z. Sakr^{98, 99, 100}, A. G. Sánchez²⁶, D. Sapone¹⁰¹ B. Sartoris^{64,8}, J. A. Schewtschenko⁴⁷, P. Schneider⁶, T. Schrabback¹⁰², M. Scodeggio³⁸, A. Secroun⁵⁸, G. Seidel⁷¹ M. Seiffert⁶⁷, S. Serrano^{15, 103, 11}, P. Simon⁶, C. Sirignano^{21, 22}, G. Sirri²⁹, A. Spurio Mancini¹⁰⁴, L. Stanco²², J. Steinwagner²⁶, P. Tallada-Crespí^{41, 42}, D. Tavagnacco⁸, A. N. Taylor⁴⁷, I. Tereno^{54, 105}, N. Tessore⁷³, S. Toft^{106, 107} R. Toledo-Moreo¹⁰⁸, F. Torradeflot^{42,41}, A. Tsyganov¹⁰⁹, I. Tutusaus⁹⁹, L. Valenziano^{2,61}, J. Valiviita^{76,77}, T. Vassallo^{64, 8}, G. Verdoes Kleijn¹¹⁰, Y. Wang¹¹¹, J. Weller^{64, 26}, G. Zamorani², F. M. Zerbi³, E. Zucca², V. Allevato³¹ M. Ballardini^{112, 113, 2}, M. Bolzonella², E. Bozzo⁵⁶, C. Burigana^{114, 61}, R. Cabanac⁹⁹, M. Calabrese^{115, 38}, A. Cappi^{2, 116} D. Di Ferdinando²⁹, J. A. Escartin Vigo²⁶, L. Gabarra¹¹⁷, J. Martín-Fleitas¹¹⁸, S. Matthew⁴⁷, M. Maturi^{98, 1} N. Mauri^{45, 29}, R. B. Metcalf^{7, 2}, A. A. Nucita^{120, 121, 122}, M. Pöntinen⁷⁶, I. Risso¹²³, V. Scottez^{86, 124}, M. Sereno^{2, 29}, M. Tenti²⁹, M. Viel^{9, 8, 14, 10, 24}, M. Wiesmann⁶⁶, Y. Akrami^{125, 126}, I. T. Andika^{127, 128}, S. Anselmi^{22, 21, 12}, M. Archidiacono^{19,65}, F. Atrio-Barandela¹²⁹, A. Balaguera-Antolinez^{46,130}, D. Bertacca^{21,63,22}, M. Bethermin¹³¹ L. Blot^{132,78}, H. Böhringer^{26,133,134}, S. Borgani^{135,9,8,10,24}, M. L. Brown¹³⁶, S. Bruton¹³⁷, A. Calabro³⁹, F. Caro³⁹, C. S. Carvalho¹⁰⁵, T. Castro^{8, 10, 9, 24}, F. Cogato^{7, 2}, S. Conseil⁵⁰, S. Contarini²⁶, A. R. Cooray¹³⁸, O. Cucciati², S. Davini⁴, F. De Paolis^{120, 121, 122}, G. Desprez¹¹⁰, A. Díaz-Sánchez¹³⁹, J. J. Diaz⁴⁶, S. Di Domizio^{5, 4}, J. M. Diego¹⁴⁰ P. Dimauro^{39, 141}, A. Enia^{1, 2}, Y. Fang⁶⁴, A. G. Ferrari²⁹, P. G. Ferreira¹¹⁷, A. Finoguenov⁷⁶, A. Franco^{121, 120, 122}, K. Ganga⁸³, J. García-Bellido¹²⁵, T. Gasparetto⁸, V. Gautard¹⁴², E. Gaztanaga^{11, 15, 143}, F. Giacomini²⁹, F. Gianotti², G. Gozaliasl^{144,76}, C. M. Gutierrez¹⁴⁵, C. Hernández-Monteagudo^{97,46}, H. Hildebrandt¹⁴⁶, J. Hjorth⁹¹, S. Joudaki⁴¹ J. J. E. Kajava^{147, 148}, Y. Kang⁵⁶, V. Kansal^{149, 150}, D. Karagiannis^{112, 151}, K. Kiiveri⁷⁴, C. C. Kirkpatrick⁷⁴, S. Kruk⁴⁹ M. Lattanzi¹¹³, L. Legrand^{152, 153}, M. Lembo^{87, 113}, F. Lepori¹⁵⁴, G. Leroy^{155, 82}, G. F. Lesci^{7, 2}, J. Lesgourgues¹⁵⁶, L. Leuzzi², T. I. Liaudat¹⁵⁷, A. Loureiro^{158, 159}, J. Macias-Perez¹⁶⁰, G. Maggio⁸, M. Magliocchetti⁵⁹, F. Mannucci¹⁶¹ R. Maoli^{162, 39}, C. J. A. P. Martins^{163, 164}, L. Maurin⁵⁷, M. Miluzio^{49, 165}, P. Monaco^{135, 8, 10, 9}, G. Morgante², S. Nadathur¹⁴³, K. Naidoo¹⁴³, A. Navarro-Alsina⁶, S. Nesseris¹²⁵, L. Pagano^{112, 113}, F. Passalacqua^{21, 22}, K. Paterson⁷¹ L. Patrizii²⁹, A. Pisani⁵⁸, D. Potter¹⁵⁴, S. Quai^{7,2}, M. Radovich⁶³, P. Reimberg⁸⁶, P.-F. Rocci⁵⁷, G. Rodighiero^{21,63}, S. Sacquegna^{120, 121, 122}, M. Sahlén¹⁶⁶, D. B. Sanders⁴⁴, A. Schneider¹⁵⁴, D. Sciotti^{39, 40}, E. Sellentin^{167, 37}, L. C. Smith¹⁶⁸, J. G. Sorce^{169, 57}, K. Tanidis¹¹⁷, C. Tao⁵⁸, G. Testera⁴, R. Teyssier¹⁷⁰, S. Tosi^{5, 4, 3}, A. Troja^{21, 22}, M. Tucci⁵⁶, C. Valieri²⁹, A. Venhola¹⁷¹, D. Vergani², F. Vernizzi¹⁷², G. Verza¹⁷³, P. Vielzeuf⁵⁸, and N. A. Walton¹⁶⁸ ``` (Affiliations can be found after the references) - Four coming snapshots, 54 (Gpc/h)³ coming volume - Real space measurements - 2PCF - 3PCF: All triangle configurations, parametrised by $\eta_{\min} =$ where Δ bin size - Cumulative SNR reveals how important is reaching the smallscale regime in the modeling Top: 2PCF measurements at different four redsfhit snapshots. Bottom: as the top panel, but for the 3PCF Cumulative SNR as a function of the minimum scale, for the 2PCF and the 3PCF (parametrised by different choices of η_{\min}) # First higher-order full-shape analysis in configuration space in the literature - Theoretical Gaussian Covariance - 2PCF galaxy 1-loop model, 3PCF galaxy tree level. Parameter set: $\{A_s,h,\omega_{\rm cdm}\}+\{b_1,b_2,b_{\mathcal{G}_2},b_{\Gamma_3},c_0\}$ - 2PCF + 3PCF significantly improves the constraining power with respect to only 2PCF - Full-shape minimum scale for constraining cosmological parameters consistent with template fitting and methodological studies (Veropalumbo et al, 2022) 2D Posterior distribution of cosmological parameters + linear bias from a 2PCF + Gaussian prior on linear bias (grey) and a joint 2PCF + 3PCF analysis as a function of different $r_{\rm min}$ and $\eta_{\rm min}$ (different colors and linestyles) at z = 0.9 First higher-order full-shape analysis in configuration space in the literature - Theoretical Gaussian Covariance - 2PCF galaxy 1-loop model, 3PCF galaxy tree level. Parameter set: $\{A_s, h, \omega_{\text{cdm}}\} + \{b_1, b_2, b_{\mathcal{G}_2}, b_{\Gamma_3}, c_0\}$ - Bias relations help in constraining $A_{\rm s}$ and b_1 - Full-shape minimum scale for constraining cosmological parameters consistent with template fitting and methodological studies (Veropalumbo et al, 2022) 2D Posterior distribution of cosmological parameters + galaxy bias parameters from a joint 2PCF + 3PCF analysis as a function of different relations between bias parameters (different colors) ## Conclusions - 3PCF as a powerful statistical tool combined with 2PCF, important to constrain physics responsible to non-Gaussianity in the density field - **Unlocked** first full-shape 2PCF + 3PCF in real space in a simulated dataset. It maximise the extraction of cosmological information in a configuration space higher-order analysis and fills the gap with Fourier space modelling (power spectrum + bispectrum) - Just the beginning, research line unfolding in many directions, some of them: - Exploring the full-shape information content of the redshift space (isotropic and anisotropic) 3PCF (Nagainis, Guidi, Moresco et al, in prep) ——> see Kristers' talk! - First analysis in redshift space with real data (BOSS, *Guidi* et al, in prep) + application to Stage IV upcoming datasets → (using of MElCorr code, see Alfonso's talk!) - Addressing beyond LCDM cosmologies, and the information content of the full-shape 3PCF. Role of massive neutrinos current ongoing (Labate, Guidi, et al in prep) see Michele's talk! - Higher-order correlation function will be fundament to maximise the extraction of cosmological information # Appendix: Full-shape modelling of 2PCF and 3PCF in real space 2D Posterior distribution of cosmological parameters + linear bias from a 2PCF + Gaussian prior on linear bias (grey) and a joint 2PCF + 3PCF analysis as a function of different r_{\min} and η_{\min} (different colors and linestyles). Different panels show different redsfhit snapshots # Appendix: Emulator Validation Normalised histogram of the ratio between the difference between emulated and exact modelling 2PCF (left), 3PCF (right) predictions and the corresponding uncertainty