

U.S. Department of Energy Office of Science

Cosmological neutrino mass: a frequentist overview

Neutrino mass profile likelihoods in light of the latest DESI data

Domitille Chebat — 17/07/25 — Optimizing the Extraction of Cosmological Information from the Latest Spectroscopic Redshift Surveys

Table of contents

- 1. Measuring the neutrino mass (in cosmology)
- 2. Methodology: profile likelihoods, why and how
- 3. Results I: Geometrical effect (mainly)
- 4. Interlude: Why are these constraints so low?
- 5. Results II: Free-streaming and LSS-based constraints

Neutrinos and neutrino mass

- Electrically neutral, very light
- Three flavors: e, μ , τ
- Three mass states: m₁ < m₂, m₃
- From flavor oscillations:

$$|\Delta m_{32}^2| >> \Delta m_{21}^2$$

- Normal and inverted ordering
- Only absolute conclusion: minimal sum
 - $\Sigma m_{\nu} \geq$ 60meV (normal) or $\Sigma m_{\nu} \geq$ 100meV (inverted)

Neutrino mass in cosmology

- Cosmological data is not sensitive to flavor, only gravitation
- After the Big Bang, neutrinos are hot and relativistic / radiation-like behavior
- They cool down and transition to a non-relativistic behavior
 - affected by gravitation
 - behave (somewhat) like matter
- Non-relativistic transition happened between the CMB and now (z~100)

Neutrino mass in cosmology — the geometrical effect

• Universe expansion: neutrinos go from radiation to matter contribution

$$H(z) = H_0 \sqrt{\Omega_{\Lambda} + \Omega_{\rm m}(1+z)^3 + \Omega_{\rm r}(1+z)^4}$$

• This affects distance measurements (typically, CMB BAO vs DESI BAO)

Neutrino mass in cosmology — the free-streaming effect

- Neutrinos cluster post non-relativistic transition
- Very warm: non-negligible free-streaming length λ_{fs}
- Clustering inhibited below λ_{fs} : small-scale power spectrum suppression

Credit: Arnazıd de Mattia

Methodology

Methodology

Profile likelihoods, confidence intervals (regular case)

- Profile likelihood: function of $\sum m_{
 u}$
 - Fix the parameter of interest $\sum m_{
 u}$
 - Maximize the likelihood with regard to all other parameters
- Gaussian likelihood → χ² / parabola
 - σ = data constraining power
 - μ_0 = parabola minimum
- 95% confidence limit at $\Delta \chi^2 = 3.84$

$$\sum m_{
u} \mapsto \min_{\mathcal{C}, \mathcal{N}} -2\log\left(\mathcal{L}\left(\sum m_{
u}, \mathcal{C}, \mathcal{N}
ight)\right)$$

Methodology Why profile likelihoods?

- Immunity to prior volume effects (as opposed to Bayesian inference)
 - eg for DESI full-shape
- Bayesian neutrino mass inference is cut off by zero limit
- In this situation, profile likelihoods
 - Also provide a 95% CL limit (confidence)
 - Inform on the data's constraining strength

DESI 2024 VI, fig 11: marginalized 1D posterior constraints on $\Sigma m_{
u}$

Methodology

How to deal with interrupted profiles

- Profile is cut off: still fit a parabola
- Feldman & Cousins 1998:
 - Confidence limit, accounts for $\mu_0 < 0$
 - Often close to $\Delta \chi^2 = 3.84$
- Isolate constraining power from upper limit despite cut-off
- Intuitive visual comparison

Planck 2013 XVI, Naredo-Tuedo+ 2024, Herold+ 2025

Data combinations

Geometrical effect

Compare early-time ($z << z_{NR}$) and late-time ($z >> z_{NR}$) distance measurements

- Relativistic neutrinos: CMB
- Non-relativistic neutrinos: DESI
- CMB: Planck, ACT
- BAO: DESI DR1/DR2 BAO

Free-streaming effect

Compare late-time matter power spectrum to primordial tilt and amplitude

- Primordial: CMB, Lya-inferred
- Late-time: DESI FS, CMB lensing
- CMB shape: Planck CMB lensing: ACT DR6
- Lya: SDSS DR14 P1D
 FS: DESI DR1 FS

Results I: geometrical effect wind

Results I: geometrical effect DESI BAO + CMB

- Add CMB lensing
 σ and μ improve
- Compare Planck / ACT DR6
 σ relaxes, no other change
- Upper limit changes are consistent with constraining powers
- Upper limits comparable to Bayesian

Results I: geometrical effect (mainly)

Adding DESI full-shape

- At first sight, constraint "improves" (upper limit goes down)
- But almost entirely due to a shift

Likelihoods	σ	μ_0	95% CL
BAO + Planck	54	-48	63
FS+BAO + Planck	53	-63	53

- FS not competitive against geometry
- Upper limit shift consistent with Bayesian

Interlude: but why are the limits so low?

Interlude: but why are the limits so low?

Oscillations, geometry and Ω_{m}

- "Low" = below the oscillations-set normal ordering minimum ~ 60 meV
- Can be pinned on the combination of
 - 1. Ω_m Σm_v degeneracy in the CMB
 - 2. DESI preference for Ω_m < CMB one
- Can be relaxed by changing the expansion history (w_0w_aCDM), changing Ω_m (optical depth)...

Interlude: but why are the limits so low?

... and some solutions: ACDM extensions

Results II: free-streaming effect

Results II: free-streaming effect

DESI full-shape + CMB spectral index

- Compressed primordial shape information from the CMB
- → → → : more / more stringent information on primordial shape
- Very relaxed compared to geometrical constraints
- No peak in the positive sector
- Oscillation minima largely included at 95% CL

Results II: free-streaming effect DESI full-shape + eBOSS Lyman-α P1D

- Compressed Lyα P1D shape, "translates" to primordial shape
- • / : different methods and simulations of eBOSS quasars P1D (Palanque+ 2020, Walther+ 2025)
- Successful CMB-less constraint!
- Comparable to CMB shape priors
- No peak in positive sector, but oscillation minima included at 95%

Conclusion

Summary and perspectives

- Complementary to Bayesian inference
 - Impervious to prior volume effects (full-shape...)
 - Distinguish constraining power σ from upper limit at first glance
- Costly procedure, even just in 1D
 - High number of calls
 - More and more expensive

Paper is out now!

More data combinations

Non-degenerate masses

Lightest neutrino mass...

emulation & autodifferentiation

2507.12401

