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The problem
Redshift Space Distortions

• We use redshift as distance proxy 

• Distortions in the LSS mapping 

• Degrade the BAO + Cosmic Voids 

• Can be partially reversed via 
standard reconstruction 
techniques,  usually based on 
linear theory
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Padmanabhan et al. (2012), arXiv:1202.0090 [astro-ph.CO]

https://arxiv.org/abs/1202.0090


Standard reconstruction
Strenghts and room for improvement

PRO 

• Based on a physically motivated 
framework 

• Generally robust against 
variation of input parameters 

• Large scale modes are recovered 
very well
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CONS 

• Small scale modes are not 
recovered very well 

• Only partial RSD removal



Can we improve standard 
reconstruction techniques?
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Convolutional Neural Networks
A Data-Driven RSD Correction

• Leverage large simulation to train CNNs 

• Learn the mapping from a reconstructed density field to Real Space 

• Capture nonlinear transformations without explicit modelling assumptions 

• Modest computational cost, scalable with modern hardware 

• Once trained, the model can generalise to new data
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Plan
A three-part benchmark

Linear Theory (LT): 

• Estimate the 
displacement field 
using the iFFT 
algorithm 

• Displace the tracers 
accordingly
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Neural Network (NN): 

• Feed the redshift-
space density field 
into a Neural Network 

• NN learns to map the 
RSDs to the real space 
density field 

LT+NN: 

• Apply LT 

• Feed the partially 
corrected density 
field into a NN 

• NN learns to correct 
the residual RSDs

Burden et al. (2015) 
arXiv:1504.02591 [astro-ph.CO]

https://arxiv.org/abs/1504.02591


Dataset
Halo catalogues from the Quijote simulations

• Simulations: 100 halo catalogues from the Quijote High-Resolution N-body 
runs 

• Dataset Split: 0-79: training set; 80-99: validation set. 

• Snapshot: z=1 

• Box size: 1000 Mpc/h per side
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The Neural Network step
U-Net architecture

8

• Architecture: Symmetric 
encoder-decoder 

• Depth: 5 blocks, each with 2 
convolutional layers + ReLu + 
max pooling 

• Channels: Increasing number 
of convolutional kernels 
capture hierarchical features 

• I/O:  gridded density field 

• Loss: MSE between predicted 
and real space field
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Ganeshaiah Veena et al. (2023)

arXiv:2212.06439 [astro-ph.CO]

Lilow et al. (2024)

arXiv:2404.02278 [astro-ph.CO]

https://arxiv.org/abs/2212.06439
https://arxiv.org/abs/2404.02278


Pipeline

ρRSD
RSD Halo 
catalog

CIC

S(k)
δs(k) Ψmesh

iFFT  algo

Find the displacement

Ψ(xhalo)

9

Combine Physics and Machine Learning



Pipeline
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Displace halos by 
−f(Ψ ⋅ ̂z) ̂z

Use the displacement

ρLT
NN trained on LT 

reconstructed field 
Target: ρreal

ρLT+NN

Apply the Neural Network

NN trained on RSD 
field Target: ρreal

ρNN

Combine Physics and Machine Learning



Loss function

• NN improves  over LT 

• NN converges slowly and starts 
overfitting after 500 epochs 

• LT+NN improves over LT 

• LT+NN converges much faster 
and does not overfit up to 1000 
epochs

∼ 13 %

∼ 50 %
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Results
Residuals on a slice 
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Density PDF

• LT tends to underestimate 
densities around the mean and 
overestimate the tails 

• NN tends to assign densities 
close to the mean in 
underdense and overdense 
regions 

• LT+NN provides the best 
matching of the real space PDF

Results
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Results
Power Spectrum
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Results
Two-point correlation function
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Results
Void-Halo cross correlation function
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Conclusions
Limitations of the analysis

• Network architecture must be adapted if the number of grid points changes. 
This can be improved (e.g. Parker et al. (2025), arXiv:2504.01092 [astro-ph.CO] ). 

• Using a finer grid (256³) worsened MSE and 2PCF/PS residuals, likely due to 
insufficient training data for the increased network complexity. 

• Cell size fixed at 7.8 Mpc/h limits resolution for power spectrum and 
correlation function measurements. 

• Robustness against biases, incorrect fiducial cosmology, selection functions 
still needs thorough testing.
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https://arxiv.org/abs/2504.01092


Conclusions
Recap and future work

• Combines LT’s large-scale accuracy with NN’s small-scale strengths, outperforming each 
individually. 

• Hybrid LT+NN method reduces MSE by 50%, with excellent recovery of density PDFs and two-
point statistics on scales >20 Mpc/h. 

• Excels in removing redshift-space distortions in halos and cosmic voids; more robust than LT to 
smoothing choices. 

Future Directions 

• Include treatment of galaxy bias. 

• Test on realistic mocks and real survey data, including complex footprints and selection effects. 

• Explore advanced hybrid architectures and robustness across cosmologies.
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Thank you!
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