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Neurons in Bref

Cells of the nervous system, called neurons, are specialized in transporting and

elaborating “messages” (information).

These functions are performed via the transmission of electric signals, associated to

ionic currents, through the membrane of the neuronal cells

The human brain contains 100 billions neurons

One mm3 of cerebral cortex contains 100.000 neurons

Neurons can have different forms and dimensions: the smallest have diameters of

4 µm, while the largest can have axons of 1 or 2 meters
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Neuron Morphology

Despite their enourmous variety, neurons have some common morphological aspect:

The soma is a compact almost spherical structure (diameter ≃ 70 µm): it is the

unity deputed to information elaboration (CPU )

The dendrites collect information from other neurons and bring it to the soma, they

are ramified nearby the cell body (lenght up to 1 mm) (Input )

The axons bring information to other neurons, normally there is only 1 axon for

each cell; they can be as long as 1 meter (Output )

The synapses are the junctions among two neurons: these are the structures

transmitting information from one nervous cell to the other. There are two types of

synapses: chemical and electrical (gap junction), the most common among the

vertebrates is the chemical one. The synapses can be inhibitory as well as

excitatory
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Membrane Potential

The membrane potential Vm measures the

electrical potential difference between interior and

exterior of the neuron.

The neuron at rest has Vrest ≃ -60 mV / -75 mV

The neuron is in a dynamical equilibrium state the neuronal signals are electrical signals.
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Membrane as an Electric

Circuit

The neural membrane can be seen as an electric circuit with passive characteristics

the membrane separates positive and negative charges, it acts as a capacitance

Cm ≃ 1µF/cm2 → 4x1011 monovalent ions/cm2

the ionic channels have specific membrane resistance/conductance :

Leakage Resistance Rm ≃ 103Ω · cm2

Leakage Conductance Gm = 1/Rm ≃ mS/cm2

Vrest can be seen as a voltage generator

the membrane is also active , e.g. the ionic pumps , and highly nonlinear (some

conductance depends on Vm)
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Action Potential

The elementary unit of information transmitted in neural circuits is the Action Potential

(AP)

The neuronal signal is given by the temporal and

spatial variation of the membrane potential Vm.

The action potentials (APs) are electrical impulses

delivered when a (depolarizing) stimulus leads Vm

above a certain threshold Θ ∼ −55 mV

The AP lasts 1-2 ms and it has an amplitude of

100-120 mV

Refractory Period: it is a phase of 10 ms

(corresponding to membrane

hyperpolarization) occuring after the AP

emission

The AP travels along the axon and it is

transmitted to the other neurons. – p. 6



Synapses

The junction between two neurons is called a synapse. The synapse allows a neuron to

pass an electrical or chemical signal to another neuron. The neuron that sends the

signal to another neuron is called the pre-synaptic neuron, while the neuron that

receives the signal is called the post-synaptic neuron. The molecules that mediate the

interaction are called neurotransmitters.

Dale’s principle : a neurotransmitter released at one axon terminal of a neuron can be

presumed to be released at other axon terminals of the same neuron. A neuron can be

identified as excitatory or inhibitory in an univoque manner, it cannot be at the same time

excitatory and inhibitory – p. 7



Leaky integrate-and-fire (LIF)

neuron

A very simple model of neuron has been derived by the following electrical

schematization of the membrane.

From the Kirchhoff’s law for the currents one gets

I(t) = C
dv
dt
+ v(t)−vr

R

The current I(t) charges the RC circuit, the potential difference v(t) across the

capacitance C is compared with a threshold value VT ≡ Θ: if v(t) becomes larger than

the theshold it is reset to a value vrest = vr that is the equilibrium value of the

membrane potential.
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Leaky integrate-and-fire

neuron

By introducing the membrane time constant τ = RC one gets:

τ
dv

dt
= τ v̇(t) = −v(t) + vr +RI(t)

with τ ≃ 10− 20 ms depending on the considered neuron.

This time is quite long with respect to the action potential duration which is around 1 ms.

If I = const and v(t = 0) = v(0) the membrane potential evolution is given by

v(t) = v(0)e−t/τ + (RI + vr)(1− e−t/τ ) v(t → ∞) = RI + vr

If RI + vr > Θ Repetitive Firing (Oscillator)

If RI + vr < Θ Silent Neuron (Fixed point)
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LIF neuron

Periodic Behaviour

If RI + vr > Θ Repetitive Firing (Oscillator)

At t = 0 the neuron has been resetted to V (0) = vr

After one period t = T the neuron is at threshold V (T ) = Θ

Since the solution is

v(t) = v(0)e−t/τ + (RI + vr)(1− e−t/τ )

the period T is given by

T = τ ln
RI

vr +RI −Θ
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LIF neuron

Formal Spike

In networks: at the threshold a formal spike P (t) is sent to the other neurons

the simplest spike form is a Dirac delta P (t) = δ(t) spike

δ(t) = 0 for t 6= 0 and
∫+∞
−∞ δ(t)dt = 1

The spike train emitted by a neuron can be written as S(t) =
∑

f P (t− t(f))

where the spikes have been emitted at the times {t(f)}

The firing rate of a neuron is r = 1
∆t

∫ t+∆t
t S(x)dx = Ns

∆t
i.e. the number of

spikes emitted for unit of time
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Spiking Neural Network

v̇i(t) = a− vi(t) + gEi(t) Ei(t) =
1

N

∑

n|tn<t

Jj(n),iθ(t− tn)p(t− tn)

a > 0 suprathreshold input current

g coupling strength of the excitatory (inhibitory) interaction with the neural field

Ei(t)

p(t) pulse received by the connected neurons

Jj(n),i connectivity matrix (between the emitting j(n) and the receiving i neuron)

θ(x) Heavyside function

Learning in neural networks involves the modification of the connectivity of neurons.

supervised learning with gradient descent and spike backpropagation

(un)supervised learning with local learning rule at the synapse (e.g.

spike-time-dependent plasticity)

reinforcement learning with reward/error signal using reward modulated plasticity
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Spiking Neural Network

Supervised learning of a task is generally cast as an optimization problem in very

high dimensions

Given a population of N (artificial) neurons connected through S synaptic connections

Jij , one looks for the minimum of the cost (loss) function U({Jij}) expressing the

mismatch between the target and actual computation carried out by the network: U can

be gradually reduced through gradient descent along the gradient of the cost

Hebbian like plasticity rule

The changes in the connections Jij are functions of the firing rates ri of the neurons. As

the number N of neurons is generally much smaller than the number N2 of synaptic

interactions, the plastic changes Jij are highly interdependent, and cannot be

individually tuned to match the gradient components ∂U
∂Jij

Training through the application of adequate control stimulations neuron- and time-

dependent (obtained by solving a sequence of optimization problems)

[Borra, Cocco, Monasson, PRX LIFE 2, 043014 (2024)]
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Computational targets for

plastic neural networks

Multiple cycles of stimulations and

recordings of the network popula-

tion.

At the beginning of each cycle,

the responses of the network to a

few short probing stimulations are

recorded, and used to infer the con-

nectivity of the network. Based

on this estimate of the connectivity,

we plan a control stimulation pat-

tern, which is subsequently applied

to the neurons. Under this control,

plastic changes to the connections

take place and enhance the net-

work performance in achieving the

desired computation. The proce-

dure is iterated until the compu-

tational target is reached.
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Model

ri(t) firing rate, fi(t) time-dependent control stimulation on neuron i, Φ input-to-rate

transfer function (sigmoidal function), η(ǫj) = η(E), η(I) neuron type

τn
dri(t)

dt
= −ri(t) + Φ





∑

j

Jijri(t) + fi(t)





τs
dJij(t)

dt
= η(ǫj) [ri(t)− θ(ǫj)] rj + homeostatic feedback

Hebbian rule: the weight between two neurons increases if the two neurons activate

simultaneously, and reduces if they activate separately. Train the neural network

connectivity J to meet some target

Structural Jtarget: Utask(J) =
∑

i,j wǫi,ǫj [Jij − Jtarget]2

Functional: the target the computation carried out by the network

Utask(J) =
∑npairs

µ=1

∑

i∈out[ri(J, f
µ)− rµi ]

2

where ri(J, f
µ) stationary solution of the rate equation, fµ input stimulation, npairs set

of input/output mappings, network= input, processing, and output (“out”)
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Training Loop

The learning process stops when the value of the loss Uk is considered small enough

Estimation of the current

connectivity, Jk , through fast

probing of the responses of

the network to random

stimuli.

Calculation of the optimal

control to be applied, f∗
k , to

shift the network connectivity

state towards the desired

target.

Application of this control dur-

ing the period ∆t, leading to a

reorganization of the network

through its intrinsic plasticity

mechanisms.
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Nerve-level Neural Interfaces

Transverse Intrafascicular Multichannel Electrodes (TIMEs): single strip with

platinum electrode sites that is threaded transversely through the nerves

Nerve stimulation with TIMEs allowes for object discrimination and modulation of

grasping forces

Motor commands are decoded in real-time from five surface peripheral nerves

(electroneurographic ENG) electrodes placed on the amputee’s residual muscles

Each filtered ENG channel is first converted into a sequence of events or spike

trains before being presented to the SNN

Filtered ENG signal recorded from

a channel of the ulnar electrode

[Baracat et al (2024). Decoding

gestures from intraneural record-

ings of a transradial amputee using

event-based processing. TechRxiv]

– p. 17



Network Architecture

Spiking neural network computational model for pre-processing and decoding

motor commands from TIMEs

Neurons in the first layer encode the rectified ENG (each neuron corresponding to

one channel) into spike trains which are transmitted to the output layer.

Four neurons in the output layer are trained to predict the correct gesture. Gesture

identity is encoded within the firing rates of the input channels, with distinct rates

associated with each gestur.
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Computational Neuroscience

Lab

Istituto dei Sistemi Complessi- CNR

via Madonna del Piano 10,

Sesto Fiorentino

Thomas Kreuz (analysis of electrophysiological recordings, neuronal population

coding)

Alessandro Torcini, Antonio Politi (modelling and simulation of neuronal networks

using simple models, analysis of multi-scale models of brain function)

Ongoing project: learning algorithm capable of achieving image and text classification

accuracy in a realistic network of neural mass models.

In collaboration with Raffaele Marino (UniFi)

https://www.firenze-neuro.org/
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