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Introduction

● Over the last few decades, machine learning (ML) has become a powerful tool in particle physics, addressing 
challenges in handling high-dimensional and complex data

○ Early 2000s: boosted decision trees for event classification

○ Nearly a decade ago: deep learning for simulation and analysis workflows

● ML is nowadays used throughout the entire workflow of particle physics experiments, ranging from the 
detector level to the final analysis

In this talk we explore possible applications of ML in the field of particle physics, 
highlighting the contributions from research groups of the Florentine area
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ML in particle physics

Event classification

Objects reconstruction

Event simulation

Anomaly detection

Detector applications

Classification algorithm to separate 
rare signal events from backgrounds

ML for the identification and 
reconstruction of physics objects 

within the detector

Unsupervised learning to search 
for unexpected or BSM 
phenomena

ML algorithm to accelerate the 
event simulation and generation

ML methods to improve detector 
modeling and response 
understanding

ML in 
particle physics 
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Event classification

● The most common ML task in particle physics is probably classification

● A key challenge is to distinguish rare signal events from overwhelming background processes 

● ML is particularly suitable for this purpose as it captures correlations in high-dimensional data that are difficult to 
model analytically

○  Employ neural networks (NNs) in order to maximize the signal-to-background separation
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Model agnostic classification
B. Camaiani, M. Lizzo, L. Viliani, P. Lenzi, V. Ciulli, L. Anderlini

“simple” DNN ADNN

● Similar approach to define systematic-aware NN (S. Quinto)

Eur. Phys. J. C (2022) 82: 921

● The drawback of supervised NNs is that their output depends on the training data (MC samples)

● In the context of a Higgs boson analysis, the output depends on the physics hypothesis used to generate signal events

○ Vector boson fusion (VBF) under SM or BSM hypotheses

● Use model-independent NN to minimize the bias 
due to the theoretical modeling of the signal process

○ Adversarial deep neural network (ADNN) with 
a classifier and an adversary, trained using 
multiple signal hypotheses

○ The adversary forces the classifier to rely on 
domain-invariant features

https://link.springer.com/article/10.1140/epjc/s10052-022-10871-3
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Image segmentation in muography

● Muography uses cosmic muons to make radiography of very large 
targets, such as volcanoes and archaeological sites

P. Paccagnella, C. Frosin, V. Ciulli, L. Bonechi, D. Borselli, R. D’Alessandro, R. Ciaranfi, S. Gonzi, T. Beni 

● U-Net employed to find cavities in the acquired images

○ CNN-based architecture with an encoder-decoder 
structure and skip connections that preserve spatial details

Temperino mine

● Allows for the reconstruction of images that highlight variations in the 
density of the target
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Object reconstruction

● “Objects” : any physical entity reconstructed from raw detector 
data (electrons, muons, jets, …)

● Possible ML applications include particle identification, energy 
regression, lepton reconstruction from decay products, jet 
reconstruction and flavour tagging (e.g., b-tagging)

● B-tagging algorithms aim to identify jets originating from b-quarks

● They exploit primarily the relatively long lifetime of B-hadrons within the jets
○ secondary vertices
○ high impact parameters tracks
○ presence of charged leptons



8AI4Phys - B. CamaianiJanuary 29, 2025

Efficiency parameterization
● Several ways to estimate classifier efficiency 

○ direct tagging ➡ limited simulation statistics due to a cut on the 
b-tagging discriminant to select a given phase-space enriched in 
b/c- jets

○ 2D efficiency maps ➡ Limited in number of parameters and 
doesn’t account for higher order correlations and effects from 
close-by jet activity 

A. Calandri

● Multidimensional parameterization of efficiency weights using graph 
neural networks (GNNs)

○ It takes full event as input and provides efficiency weights for each 
jet and for each working point of the classifier

○ Higher order corrections (pT ,η, φ, fh) taken into account with 
respect to 2D efficiency maps

○ The radial separation (∆R) between jets used as edge feature to 
capture correlations among jets and environment-related effects 

CMS-DP-2022-051

https://cds.cern.ch/record/2839921
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Anomaly detection

● Anomaly detection algorithms are used to identify events that deviate from expected patterns, potentially 
revealing signs of new particles or interactions

○ Particularly suitable for model agnostic searches

● Beyond physics searches, anomaly detection is used to identify detector malfunctions or calibration issues by 
monitoring deviations in detector response
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Data Quality Monitoring in CMS
A. Papanastassiou, P. Lenzi

● In CMS, data is gathered in LumiSection (LS), corresponding to 23.31 s, and LSs 
are grouped in runs (typically a few hours long)

● During data certification, experts check several distributions of reconstructed 
variables to spot possible issue in each run

● Given the high number (~1000) of LSs in each run, AutoEncoders (AEs) are 
used to automate the data certification process

○ Trained on non anomalous data from “GOOD” runs

○ Tested on “BAD” runs to detect anomalous LSs

○ Only the anomalous LSs are removed, rather than discarding the 
entire run

● An issue in some LSs would cause the entire run to be flagged as “BAD”
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Event simulation

● Traditional Monte Carlo simulations (e.g., using Pythia and Geant4) are computationally expensive

○ They require generating a large number of events and simulating detailed interactions and detector 
responses for each one

● ML-based simulations provide a way to drastically reduce the time and resources needed:

○ Subdetectors simulation, e.g., replicating the energy distributions in calorimeters

○ Fast/flash simulation of full detector responses, which reduces computational cost while maintaining 
high accuracy

○ Event generation, accelerating particle-level event production by learning and replicating physics 
process distributions
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Lamarr

● Lamarr is the novel flash simulation framework of LHCb

● It is conceived as a pipeline of (ML-based) parameterizations designed to replace both the simulation and 
reconstruction steps

● A modular architecture (∽20 different models) allows choosing the most suitable model for simulating each 
subdetector, ensuring high flexibility

L. Anderlini, M. Barbetti

○ Acceptance/Reconstruction/Selection efficiencies → DNNs

○ Reconstructed features (e.g., smeared momenta or PID 
variables) →  GANs

● A dedicated python package                                 developed to simplify 
the use of GANs, offering ready-to-use implementations 

● The parameterizations are transformed in C, compiled as shared 
objects, and linked directly to the simulation software (scikinC tool)

● Two kinds of parameterization:

 PoS ICHEP2022 (2022) 233,
arXiv:2303.11428

https://github.com/landerlini/scikinC
https://pos.sissa.it/414/233
https://arxiv.org/abs/2303.11428
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Detector applications

● ML algorithms can enhance the study and simulation of detector responses, providing faster and more accurate 
solutions compared to traditional methods

● Possible applications are related to:

○ Study of the detector responses

○ Track and vertex reconstruction

○ Sensor calibration
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3D diamond detectors

● Simulation of 3D diamond pixel detectors for ionizing radiation

A. Bombini, C. Buti, A. Anderlini, A. Rosa, R. Pietrini

● Physics Informed Neural Networks (PINNs) are under investigation to compute time-dependent potential maps

physics 
informed

data 
informed

● These methods rely on discretized grids (e.g., finite element 
methods) and are often computationally heavy

● Modeling detector responses traditionally involves solving complex 
differential equations based on the physics of particle interactions, often 
requiring detailed geometric modeling

● PINNs solve differential equations by incorporating physical laws directly into the learning process
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4D tracking
M. Lizzo, G. Bardelli, M. Bartolini, L. Viliani, G. Sguazzoni, A. Cassese

● DCRSD: DC-coupled resistive silicon detector 

○ n-in-p sensor (LGAD)

○ 4 electrodes connected to each other via resistors 
(DC pads)

● Exploit charge sharing to reconstruct the position 
information

○ When a charged particle traverses the sensor, each 
pad sees a signal whose amplitude depends on its 
distance from the hit

● Traditional method: center of charge → unable to provide timing information

● ML-based approach: Recurrent Neural Network (RNN) to retrieve the hit position and the time of arrival

■ Waveform modeled as time series

● The goal of the project is to precisely determine the spatial and timing information of the charged particle

founded by PRIN 2022 - 2022KLK4LB
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Conclusions

● We have seen a (non complete) overview of possible applications of ML in particle physics

Thanks for your attention

● Many research groups in Florence actively involved in this field

● If you are interested in any of the topics presented, do not hesitate to contact people involved! 
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Backup slides
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Adversarial deep neural network
Classifier

Adversary
● Multiclass neural network trained only on signal 

events (SM + BSM hypotheses)

● Tries to guess the physics model of signal 
events, regressing the domain from the 
second-to-last layer of C

Classifier
● Takes as input the measurable kinematic variables of 

an event

● Trained on both signal and background events

● Aims to determine if the event is signal- or 
background-like

● Signal sample includes events coming from different 
domains, i.e. different signal models

Eur. Phys. J. C (2022) 82: 921

https://link.springer.com/article/10.1140/epjc/s10052-022-10871-3
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Competitive learning

● The classifier is penalized if its output contains too 
much information on the domain of origin of signal 
events

● If C manages to prevent A from identifying the 
signal model, then the classification is 
independent of the domains of origin of the 
events, i.e. the physics model of signal events

Two-step training procedure

Compute the gradient 
of L(A) with respect to 

the A weights

Compute first the gradient of L with 
respect to the C weights.

A weights frozen in this step.
The parameter α regulates the 

interplay between A and C

Penalty term
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Systematic-aware NN
S. Quinto, M. Lizzo, L. Viliani, P. Lenzi

● The goal of this analysis is to measure the Higgs boson production cross section in the WW boson decay channel 
using data collected during the LHC Run 3 → Run 2 measurement limited by systematic uncertainties

● Systematic uncertainties modify the shape of the binned observable used to extract the signal

● A NN has been implemented such that its output is sensitive as less as possible to systematic variations 

“simple” DNN DBNN

● NN trained using a sample corresponding 
to the nominal value of the uncertainty

● Loss function includes an additional 
penalty term to minimize differences 
between nominal and varied histograms
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Bagging technique to estimate GNN uncertainties 

● Bootstrap aggregation performed to extract central values as well as uncertainty band of GNN efficiency prediction

○ different trainings performed using training set samples with replacement 

○ uncertainty on the histogram bin of result corresponds to spread of aggregations for each bin: training 
uncertainty band around 5-10% for main kinematics features 

A. Calandri


