Multiwavelength Astrophysics Laboratory Module III: High-Energy Astrophysics

THE SKY SEEN IN GAMMA-RAYS

Ettore Bronzini University of Bologna & INAF-OAS

Slides based on Prof. P. Grandi lessons at the University of Bologna

High-Energies (HE)

~30 MeV - 100 GeV

Very high-Energies (VHE)

~100 GeV - 100 TeV

HESS

CT

CTAO-N

LHAASO

WHAT WE OBSERVE

Observed emission in gamma-ray band **cannot** be explained in terms of thermal radiation —> **NON-THERMAL PROCESSES**

 $\epsilon_{\rm c}(\nu) \propto K \nu^{-\alpha}$ ∫ *Ur* (*ν*)*ν^α*

 $\alpha =$ *p* − 1 2

ν

where $\pi^0 \rightarrow 2\gamma$

dν

Given a PL distribution of electron energies

 $(\gamma_e) = K \gamma_e^{-p}$, $\gamma_{\min} < \gamma_e < \gamma_{\max}$

Sync. energy density

 $\epsilon_{s}(\nu) \propto KB^{(p+1)/2} \nu^{-(p-1)/2}$

IC energy density

magnetic field

Ur (*ν*) seed photon density

LEPTONIC HADRONIC

 $p + p \rightarrow \pi^{\pm}, \pi^0, K^{\pm}, K^0, p, n...$

 $p + \gamma_e \rightarrow \Delta^+ \rightarrow \pi^0 + p$ $\rightarrow \pi^+ + n$

DETECTORS

Pair conversion telescope

 $\gamma \rightarrow e^- + e^+$

Incoming gamma rays pass freely through the thin [plastic](http://en.wikipedia.org/wiki/Scintillator) **[anticoincidence](http://en.wikipedia.org/wiki/Electronic_anticoincidence)** detector, while charged cosmic rays cause a flash of light. A gamma ray continues until it interacts with an atom in one of the **conversion foils**, producing two charged particles: an electron and a positron. They proceed on, creating ions in thin [silicon strip detectors](http://en.wikipedia.org/wiki/Silicon_Strip_Detector). Finally the particles are stopped by a **[calorimeter](http://en.wikipedia.org/wiki/Calorimeter_(particle_physics))** which measures the total energy deposited.

DETECTORS

Pair conversion telescope

 $\gamma \rightarrow e^- + e^+$

Incoming gamma rays pass freely through the thin [plastic](http://en.wikipedia.org/wiki/Scintillator) **[anticoincidence](http://en.wikipedia.org/wiki/Electronic_anticoincidence)** detector, while charged cosmic rays cause a flash of light. A gamma ray continues until it interacts with an atom in one of the **conversion foils**, producing two charged particles: an electron and a positron. They proceed on, creating ions in thin [silicon strip detectors](http://en.wikipedia.org/wiki/Silicon_Strip_Detector). Finally the particles are stopped by a **[calorimeter](http://en.wikipedia.org/wiki/Calorimeter_(particle_physics))** which measures the total energy deposited.

FERMI SATELLITE

Operation mode: **survey mode with a full-sky coverage every 2 orbits (3hrs)**

LARGE AREA TELESCOPE

and directions. • 16 modular towers

- The LAT detects γ-rays in the energy range from **20 MeV to ~2 TeV**, measuring their arrival times, energies,
	-
	- 18 tungsten converter layers
	- 16 dual silicon tracker planes
		- 12 thin layers on the top (*front* **section**)
		- 4 thick layers on the bottom (*back* **section**)
- Each of the 16 calorimeter modules consists of 96 long, narrow CsI scintillators, stacked in 8 layers, alternating in orientation so that the location and spread of the deposited energy can be determined.

• **photon files** (aka scientific files): for each event, includes the energy, the sky arrival direction, the quality of the reconstructed event. It also includes GTI.

• **spacecraft files** (aka housekeeping files): for each event, includes the energy, the sky arrival direction, the quality of the reconstructed event

LAT events are based on their probability of being photons (event class)

Each event class was partitioned in two event types (front and back) depending on the location of the tracker layer where the photon-to-pair occurred. **Front-converted events have intrinsically better angular resolution than back-converted ones**.

ion Type Partition

nt-section of the Tracker. Equivalent to convtype=0.

k-section of the Tracker. Equivalent to convtype=1.

ZENITH ANGLE SELECTION

Important to avoid gamma-ray produced by CRs interacting with the Earth's atmosphere

GLON

IMAGE

Counts map is a 2D representation of the studied region. In binned analysis (hereafter the assumed analysis) the events are binned into user specified squared pixels.

60 -50 40° - 30 20 Counts - 10

 \blacksquare

A 3D count cube (spatial+energy) is a set of count maps produced at different energy bins.

The analysed region is called Region of Interest (RoI). Typical RoI has a radius of 10°-20°, centred on the source of interest, and including all sources nearby the target and the background

Galactic background

dominated by unresolved pointlike sources

dominated by CRs interactions in the Galactic plane

Isotropic background

Each event class and event type selection (s) has its own IRFs

1. Effective area $A_{\text{eff}}(E, \hat{v}, s)$ photon with energy E and direction \hat{v} in the LAT frame

the product of the cross-sectional geometrical collection area, gamma-ray conversion probability, and the efficiency of a given event selection (denoted by s) for a gamma-ray

the probability density to reconstruct an incident direction $\hat{\nu}'$ for a gamma-ray with $\left(E,\hat{\nu}\right)$

the probability density to measure an event energy E' for a gamma-ray with $\left(E,\hat{\nu}\right)$ in the

2. Point-spread function $P\left(\hat{\nu}';E,\hat{\nu},s\right)$ in the event selection *s*

3. Energy Dispersion *D* (*E*′; *E*, *v*, *s*) event selection *s*

IRF: Instrument Response Function

 $R = A_{\text{eff}} \times \text{PSF} \times D$

P8R3_SOURCE_V3 on-axis effective area

P8R3_SOURCE_V3 effective area at 10 GeV, averaged over ϕ

P8R3_SOURCE_V3 acc. weighted PSF

P8R3_SOURCE_V3 acc. weighted PSF

P8R3_SOURCE_V3 acc. weighted energy resolution

ENERGY RESOLUTION

P8R3_SOURCE_V3 energy resolution at 10 GeV

- the paucity of the events
- the large errors associated with detecting gamma-rays
- the brightness of the background

Because of

THE METHOD OF MAXIMUM LIKELIHOOD

∂ℒ

∂*θi*

 x r.v. distributed according to a p.d.f. $f(x; \theta)$ $\mathsf{The}\xspace$ functional form $f(x;\theta)$ is known but θ is known.

= 0, *i* = *i*,…, *m*

Likelihood function:

Maximum likelihood estimator

-
-

 $L(\theta) =$ *n* ∏ *i*=1 $f(x_i; \theta)$

 $S(E, \hat{p}, t) = \sum_{i} S_i(E_i, t) \delta(\hat{p} - \hat{p}_i) + S_G(E, \hat{p}) + S_{eg}(E, \hat{p}) + \sum_{i} S_i(E_i, \hat{p}, t)$ *i l*

The source model is considered as

 $S(E, \hat{p}, t) = \sum$ *i* $S_i(E_i, t) \delta(\hat{p} - \hat{p}_i) + S_G(E, \hat{p}) + S_{eg}(E, \hat{p}) + \sum_{i=1}^{n} S_i(E, t)$ *l* $S_l(E_l, \hat{p}, t)$

The source model is considered as

point sources

$S(E, \hat{p}, t) = \sum$ *i*

The source model is considered as

 $s_i(E_i, t) \delta(\hat{p} - \hat{p}_i) + S_G(E, \hat{p}) + S_{eg}(E, \hat{p}) + \sum_{i=1}^{n} S_i(E, t)$ *l* $S_l(E_l, \hat{p}, t)$

Galactic & Extragalactic backgrounds

 $S(E, \hat{p}, t) = \sum$ *i* $S_i(E_i, t) \delta(\hat{p} - \hat{p}_i) + S_G(E, \hat{p}) + S_{eg}(E, \hat{p})$ ^{\leftarrow} \sum *l* $S_l(E_l, \hat{p}, t)$

The source model is considered as

other sources

$$
S(E,\hat{p},t) = \sum_{i} s_i(E_i,t) \delta(\hat{p}-\hat{p}_i) + S_G(E,\hat{p}) + S_{eg}(E,\hat{p}) + \sum_{l} S_l(E_l,\hat{p},t)
$$

The model is then folded with the IRF to obtain the predicted counts in the measured quantity space (E', \hat{p}', t')

The source model is considered as

 $dE d\hat{p} R (E', \hat{p}', t; E, \hat{p}) S (E, \hat{p}, t)$

$$
M(E', \hat{p}', t) = \int_{SR} dE
$$

 $p_{\lambda}(n) =$

The number of counts in each bin/pixel is small and it is well described by a Poisson distribution

 average # of events *λ* # of events in each bin *n*

 ${\mathscr L}$ is the product of the probabilities of observing n_k counts in each bin (k) when the number of counts predicted by the model is m_k

e−*mk* ∏ *k* $m_k^{n_k}$ *k n*! = *e*−*N*pred $m_k^{n_k}$ *k n*!

 $\ln \mathcal{L} = -N_{\text{pred}} + \sum n_k \ln(m_k) \in \ln(n!)$

k

This does not depend on the model. It can be neglected.

$TS = -2 \ln |\frac{1}{2}$

where $\mathscr{L}_{\text{null}}$ and \mathscr{L}_{src} are the maximum likelihood values under the null (no additional sources) and alternative (additional source) hypothesis. In the limit of a large number of counts, Wilks' theorem states that the TS for the null hypothesis is asymptotically distributed as a χ_n^2 distribution, where is the number of the parameters characterising the additional source *χ*2 n^{2} distribution, where *n*

 $\mathscr{L}_{\text{null}}$ **As a standalone value,** $\mathscr L$ **is meaningless!** A test statistics (TS) is defined as

 \mathscr{L}_{src}

GLON

LC and VARIABILITY

A light curve is produced by dividing the data into time bins and applying the likelihood analysis procedure to each bin

To test the variability of a source, we define a TS_{var} index, defined as

ln $\mathscr{L}_i(F_i)$ \mathscr{L}_i (F_{glob})

• $\mathscr{L}_i(F_i)$ is the likelihood obtained in each interval by fixing the spectral

- \bullet \mathscr{L}_i (F_{glob}) is the likelihood obtained in the fit over the total time
- parameters and adjusting the normalization
- TS_{var} is distributed as a χ^2_{n-1} , where *n* is the number of time bins

Alpha Configuration:

- CTAO-N (La Palma): 4 LSTs + 9 MSTs
-

• CTAO-S (Chile, Panaral): 14 MSTs + 37 SSTs (+2 LSTs + 5 SSTs by PNRR CTA+)

People involved in CTAO based in Bologna (in different forms/roles)

CTAO HQ. **R. Zanin** (CTAO project scientists) Few people also at IRA (G. Migliori, extragal) INAF-OAS/UniBo ~ 40 people

E. Bronzini (PhD, extragal) G. Brunelli (PhD, gal) **A. Bulgarelli** (software dev, ML) **M. Cappi** (CTA+ scientific resp., extragal) L. Castaldini (software dev, ML) P. Da Vela (IGMF, extragal) **M. Dadina** (extragal) A. Di Piano (PhD, software dev, ML) **V. Fioretti** (software dev, ML) **P. Grandi** (extragal)

S. Marchesi (gal, extragal) C. Nanci (IGMF, extragal) N. Parmiggiani (software dev, ML) G. Panebianco (software dev, ML) **V. Sguera** (gal) **E. Torresi** (extragal) **C. Vignali** (extragal)

