Multiwavelength Astrophysics Laboratory Module III: High-Energy Astrophysics

THE SKY SEEN IN GAMMA-RAYS

Slides based on Prof. P. Grandi lessons at the University of Bologna

Ettore Bronzini University of Bologna & INAF-OAS

High-Energies (HE)

~30 MeV - 100 GeV

Very high-Energies (VHE)

~100 GeV - 100 TeV

HESS

 \mathbf{C}

CTAO-N

S

WHAT WE OBSERVE

LEPTONIC

Given a PL distribution of electron energies

 $\mathcal{N}(\gamma_e) = K \gamma_e^{-p}, \quad \gamma_{\min} < \gamma_e < \gamma_{\max}$

Sync. energy density

 $\epsilon_{\rm s}(\nu) \propto K B^{(p+1)/2} \nu^{-(p-1)/2}$

IC energy density

magnetic field

 $U_r(\nu)$ seed photon density

 $\epsilon_{\rm c}(\nu) \propto K \nu^{-\alpha} \left[\frac{U_r(\nu)\nu^{\alpha}}{\nu} d\nu \right]$

 $\alpha = \frac{p-1}{2}$

Observed emission in gamma-ray band cannot be explained in terms of thermal radiation -> NON-THERMAL PROCESSES

HADRONIC

 $p + p \to \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, p, n...$

 $p + \gamma_{\epsilon} \to \Delta^+ \to \pi^0 + p$ $\rightarrow \pi^+ + n$

where $\pi^0 \to 2\gamma$

Pair conversion telescope

 $\gamma \rightarrow e^- + e^+$

Incoming gamma rays pass freely through the thin plastic **anticoincidence** detector, while charged cosmic rays cause a flash of light. A gamma ray continues until it interacts with an atom in one of the **conversion foils**, producing two charged particles: an electron and a positron. They proceed on, creating ions in thin silicon strip detectors. Finally the particles are stopped by a **calorimeter** which measures the total energy deposited.

DETECTORS

Pair conversion telescope

 $\gamma \rightarrow e^- + e^+$

Incoming gamma rays pass freely through the thin plastic **anticoincidence** detector, while charged cosmic rays cause a flash of light. A gamma ray continues until it interacts with an atom in one of the **conversion foils**, producing two charged particles: an electron and a positron. They proceed on, creating ions in thin silicon strip detectors. Finally the particles are stopped by a **calorimeter** which measures the total energy deposited.

DETECTORS

Operation mode: survey mode with a full-sky coverage every 2 orbits (3hrs)

FERMI SATELLITE

LARGE AREA TELESCOPE

and directions. 16 modular towers

- The LAT detects y-rays in the energy range from 20 MeV to ~2 TeV, measuring their arrival times, energies,

 - 18 tungsten converter layers
 - 16 dual silicon tracker planes
 - 12 thin layers on the top (front section)
 - 4 thick layers on the bottom (back section)
- Each of the 16 calorimeter modules consists of 96 long, narrow Csl scintillators, stacked in 8 layers, alternating in orientation so that the location and spread of the deposited energy can be determined.

photon files (aka scientific files): for each event, includes the energy, the sky arrival direction, the quality of the reconstructed event. It also includes GTI.

	ENERGY	E RA	E DEC	L	E B	E THETA	E PHI	ZENITH_ANGLE	EARTH_AZIMUTH_ANGLE	TIME	EVENT_ID
Select	E	E	E	E	E	E	E	E	E	D	J
E All	MeV	deg	deg	deg	deg	deg	deg	deg	deg	s	
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify
1	1.024935E+02	1.890637 E +02	4.887585E+01	1.296221E+02	6.805478E+01	3.311039E+01	1.545781E+02	6.648592E+01	3.855091E+01	2.395579495640E+08	1499902
2	8.548724E+03	1.844947E+02	4.871450E+01	1.374336E+02	6.746097E+01	7.881751E+01	3.575599E+02	1.121413E+02	3.180587E+02	2.395605824415E+08	3365803
3	4.587276E+02	1.882033E+02	4.872671E+01	1.311867E+02	6.810202E+01	7.670603E+01	3.590155E+02	1.099964E+02	3.179321E+02	2.395605964979E+08	3394549
4	1.787166E+02	1.800865E+02	4.572431E+01	1.482148E+02	6.881462E+01	2.222104E+01	2.357567E+02	5.720790E+01	2.317117E+01	2.395698295218E+08	8718051
5	8.558330E+01	1.837057E+02	4.752892E+01	1.398792E+02	6.837653E+01	7.378289E+01	3.461026E+02	1.055196E+02	3.156298E+02	2.395717697642E+08	400736
6	1.835469E+03	1.869453E+02	4.893111E+01	1.332178E+02	6.772206E+01	4.873021E+01	7.576329E+01	7.949971E+01	4.156288E+01	2.395802562035 E+ 08	4873353
7	1.422232E+02	1.805116E+02	4.749071E+01	1.450752E+02	6.745815E+01	4.611554E+01	7.095655E+01	7.604772E+01	4.412677E+01	2.396032045441E+08	3810555
8	8.920106E+01	1.864955E+02	4.862397E+01	1.341833E+02	6.794450E+01	3.354660E+01	1.491865E+02	6.700893E+01	3.844512E+01	2.396152818320E+08	6007701
9	1.672174E+02	1.869159E+02	4.830136E+01	1.336816E+02	6.832774E+01	7.213040E+01	3.488381E+02	1.046863E+02	3.168086 E +02	2.396177444197E+08	12708295
10	4.423530E+02	1.855420E+02	4.861044E+01	1.357987E+02	6.778015E+01	7.637954E+01	3.572539E+02	1.098098E+02	3.181917E+02	2.396179385276E+08	13076259
11	1.376245E+02	1.822363E+02	4.813775E+01	1.416184E+02	6.741972E+01	6.654009E+01	5.058924E+01	9.752274E+01	2.643031E+01	2.396254579644E+08	4391977
12	2.094003E+02	1.872630E+02	4.830079E+01	1.330747E+02	6.838431E+01	3.717078E+01	2.957832E+02	6.998155E+01	3.571473E+02	2.396278463736 E+ 08	10130810
13	6.923818E+02	1.849774E+02	4.784232E+01	1.374045E+02	6.839037E+01	7.719269E+01	3.595765E+02	1.106789E+02	3.179611E+02	2.396294471081E+08	15577911
14	4.603773E+02	1.844559E+02	4.782698E+01	1.383101E+02	6.828523E+01	7.885845E+01	4.217021E+01	1.128288E+02	3.577484E+02	2.396420389208E+08	6878194
15	3.958750E+02	1.854190E+02	4.865240E+01	1.359700E+02	6.771561E+01	7.824626E+01	7.339544E+00	1.124857E+02	3.217743E+02	2.396468240380E+08	3561844
16	1.522196E+02	1.807202E+02	4.786566E+01	1.442811E+02	6.720000E+01	7.612041E+01	3.505654 E +02	1.090533E+02	3.166456E+02	2.396579508791 E +08	810339
17	6.740921E+02	1.835186E+02	4.681407E+01	1.409744E+02	6.898370E+01	7.829476E+01	2.269450E+00	1.119172E+02	3.180127E+02	2.396581747342E+08	1290487
18	5.106375E+03	1.893090E+02	4.898834E+01	1.291509E+02	6.796814E+01	7.773487E+01	4.160465E+01	1.124790E+02	3.478119E+02	2.396590991929E+08	2889014
19	7.472168E+02	1.868377E+02	4.879556E+01	1.334869E+02	6.783618E+01	7.843820E+01	4.035171E+01	1.130395E+02	3.498450E+02	2.396591083155E+08	2903409
20	5.836695 E +02	1.814474E+02	4.865161E+01	1.422525E+02	6.672875E+01	7.627213E+01	3.548330E+02	1.099225E+02	3.188514E+02	2.396924843675E+08	11181733
21	8.121642E+02	1.816064E+02	4.582505E+01	1.455328E+02	6.927760E+01	7.904011E+01	4.119340E+01	1.126623E+02	2.903141E+00	2.396937279845E+08	2004100
22	1.462864E+02	1.824575E+02	4.912804E+01	1.402244E+02	6.657982E+01	3.083014E+01	2.587232E+02	6.557020E+01	1.626861E+01	2.396961748119E+08	6589035

spacecraft files (aka housekeeping files): for each event, includes the energy, the sky arrival direction, the quality of the reconstructed event

	START	STOP	SC_POSITION	LAT_GEO	LON_GEO	RAD_GEO	RA_ZENITH	DEC_ZENITH	B_MCILWAIN	L_MCILWAIN	GEOMAG_LAT
Select	D	D	3E	E	E	D	E	E	E	E	E
E All	S	s	m	deg	deg	m	deg	deg	Gauss	Earth_Radii	deg
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify
1	2.395574174942E+08	2.395574466000E+08	Plot	1.844749E+01	-9.255068E+01	5.399130526349E+05	9.693066E+01	1.834127E+01	3.138191E+00	1.429734E+00	3.324647E+01
2	2.395574466000E+08	2.395574766000 E +08	Plot	1.786626E+01	-9.084282E+01	5.400102692170E+05	9.876013E+01	1.776295E+01	3.064357E+00	1.423360E+00	3.305048E+01
3	2.395574766000 E+ 08	2.395575066000 E +08	Plot	1.724941E+01	-8.909514E+01	5.401241736156E+05	1.006332E+02	1.714921E+01	2.984627E+00	1.416692E+00	3.284293E+01
4	2.395575066000 E+ 08	2.395575366000 E+ 08	Plot	1.661528E+01	-8.736010E+01	5.402510991608E+05	1.024935E+02	1.651834E+01	2.900238E+00	1.408996E+00	3.260005E+01
5	2.395575366000 E+ 08	2.395575666000 E+ 08	Plot	1.596466E+01	-8.563747E+01	5.403894299848E+05	1.043415E+02	1.587111E+01	2.810311E+00	1.401272E+00	3.235264E+01
6	2.395575666000 E+ 08	2.395575966000 E+ 08	Plot	1.529835E+01	-8.392696E+01	5.405426559357E+05	1.061774E+02	1.520832E+01	2.716681E+00	1.392566E+00	3.206923E+01
7	2.395575966000 E +08	2.395576266000 E+ 08	Plot	1.461712E+01	-8.222823E+01	5.407080061907E+05	1.080014E+02	1.453074E+01	2.608127E+00	1.383829E+00	3.177983E+01
8	2.395576266000 E+ 08	2.395576566000 E+ 08	Plot	1.392177E+01	-8.054092E+01	5.408898597805E+05	1.098141E+02	1.383917E+01	2.520987E+00	1.374233E+00	3.145602E+01
9	2.395576566000 E +08	2.395576866000 E+ 08	Plot	1.321308E+01	-7.886463E+01	5.410834016968E+05	1.116157E+02	1.313437E+01	2.420614E+00	1.364511E+00	3.112139E+01
10	2.395576866000 E+ 08	2.395577166000 E +08	Plot	1.249183E+01	-7.719890E+01	5.412909276185E+05	1.134068E+02	1.241715E+01	2.318201E+00	1.354345E+00	3.076402E+01
11	2.395577166000E+08	2.395577466000 E+ 08	Plot	1.175882E+01	-7.554327E+01	5.415124945196E+05	1.151878E+02	1.168826E+01	2.217724E+00	1.343371E+00	3.036938E+01
12	2.395577466000 E+ 08	2.395577766000 E+ 08	Plot	1.101480E+01	-7.389725E+01	5.417498436402E+05	1.169591E+02	1.094848E+01	2.116858E+00	1.332149E+00	2.995587E+01
13	2.395577766000 E+ 08	2.395578066000 E+ 08	Plot	1.026057E+01	-7.226027E+01	5.419994420083E+05	1.187214E+02	1.019859E+01	2.017124E+00	1.320367E+00	2.951028E+01
14	2.395578066000 E+ 08	2.395578366000 E+ 08	Plot	9.496881E+00	-7.063181E+01	5.422622995504E+05	1.204753E+02	9.439344E+00	1.919298E+00	1.307884E+00	2.902472E+01
15	2.395578366000 E +08	2.395578666000 E+ 08	Plot	8.724513E+00	-6.901128E+01	5.425414003989E+05	1.222211E+02	8.671507E+00	1.823221E+00	1.294480E+00	2.848694E+01
16	2.395578666000 E +08	2.395578966000 E+ 08	Plot	7.944216E+00	-6.739810E+01	5.428319375541E+05	1.239596E+02	7.895826E+00	1.731516E+00	1.280929E+00	2.792483E+01
17	2.395578966000 E +08	2.395579266000 E+ 08	Plot	7.156761E+00	-6.579165E+01	5.431382326489E+05	1.256914E+02	7.113063E+00	1.642843E+00	1.266081 E+ 00	2.728608E+01
18	2.395579266000 E +08	2.395579566000 E+ 08	Plot	6.362885 E +00	-6.419132E+01	5.434570608616E+05	1.274171E+02	6.323952 E+ 00	1.557904E+00	1.251457E+00	2.663170E+01
19	2.395579566000E+08	2.395579866000 E+ 08	Plot	5.563341E+00	-6.259646E+01	5.437888100188E+05	1.291373E+02	5.529237E+00	1.478563E+00	1.236706E+00	2.594403E+01
20	2.395579866000 E+ 08	2.395580166000 E+ 08	Plot	4.758880E+00	-6.100642E+01	5.441360150658E+05	1.308527E+02	4.729660E+00	1.404279E+00	1.221925E+00	2.522461E+01
21	2.395580166000 E +08	2.395580466000 E+ 08	Plot	3.950237E+00	-5.942054E+01	5.444953555272E+05	1.325639E+02	3.925949E+00	1.335575E+00	1.207762E+00	2.450395E+01
22	2.395580466000 E+ 08	2.395580690931E+08	Plot	3.138157E+00	-5.783817E+01	5.448677722007E+05	1.342716E+02	3.118841E+00	1.273103E+00	1.194659E+00	2.380718E+01

LAT events are based on their probability of being photons (event class)

Standard Hierarchy for LAT Event Classes									
Event Class	evclass	Photon File	Extended File	Description					
P8R3_TRANSIENT020	16		X	Transient event class with background rate equal to two times the A10 IGRB reference spectrum.					
P8R3_TRANSIENT010	64		Х	Transient event class with background rate equal to one times the A10 IGRB reference spectrum					
P8R3_SOURCE	128	X	X	This event class has a residual background rate that is comparable to P7REP_SOURCE. This is the recommended class for most analyses and provides good sensitivity for analysis of point sources and moderately extended sources.					
P8R3_CLEAN	256	X	X	This class is identical to SOURCE below 3 GeV. Above 3 GeV it has a 1.3-2 times lower background rate than SOURCE and is slightly more sensitive to hard spectrum sources at high galactic latitudes.					
P8R3_ULTRACLEAN	512	Х	Х	This class has a background rate very similar to ULTRACLEANVETO.					
P8R3_ULTRACLEANVETO	1024	X	X	This is the cleanest Pass 8 event class. Its background rate is 15-20% lower than the background rate of SOURCE class below 10 GeV, and 50% lower at 200 GeV. This class is recommended to check for CR-induced systematics as well as for studies of diffuse emission that require low levels of CR contamination.					
P8R3_SOURCEVETO	2048	048 X X X This class has the same background rate up to SOURCE class background rate up to above 50 GeV, its background rate is th ULTRACLEANVETO one while having acceptance.		This class has the same background rate than the SOURCE class background rate up to 10 GeV but, above 50 GeV, its background rate is the same as the ULTRACLEANVETO one while having 15% more acceptance.					

		Conversi
Event Type	evtype	Description
FRONT	1	Events converting in the From
BACK	2	Events converting in the Bac

Each event class was partitioned in two event types (front and back) depending on the location of the tracker layer where the photon-to-pair occurred. Front-converted events have intrinsically better angular resolution than back-converted ones.

ion Type Partition

nt-section of the Tracker. Equivalent to convtype=0.

k-section of the Tracker. Equivalent to convtype=1.

ZENITH ANGLE SELECTION

Important to avoid gamma-ray produced by CRs interacting with the Earth's atmosphere

GLON

IMAGE

- 50 - 40 - 30 - 20 stunoy - 10

Lo

Counts map is a 2D representation of the studied region. In binned analysis (hereafter the assumed analysis) the events are binned into user specified squared pixels.

A 3D count cube (spatial+energy) is a set of count maps produced at different energy bins.

The analysed region is called Region of Interest (Rol). Typical Rol has a radius of 10°-20°, centred on the source of interest, and including all sources nearby the target and the background

Galactic background

dominated by CRs interactions in the Galactic plane

Isotropic background

dominated by unresolved pointlike sources

Each event class and event type selection (s) has its own IRFs

1. Effective area $A_{\text{eff}}(E, \hat{v}, s)$ photon with energy E and direction \hat{v} in the LAT frame

2. Point-spread function $P(\hat{v}'; E, \hat{v}, s)$ in the event selection s

3. Energy Dispersion $D(E'; E, \hat{v}, s)$ event selection s

IRF: Instrument Response Function

 $R = A_{\text{eff}} \times \text{PSF} \times D$

the product of the cross-sectional geometrical collection area, gamma-ray conversion probability, and the efficiency of a given event selection (denoted by s) for a gamma-ray

the probability density to reconstruct an incident direction \hat{v}' for a gamma-ray with (E, \hat{v})

the probability density to measure an event energy E' for a gamma-ray with (E, \hat{v}) in the

P8R3_SOURCE_V3 on-axis effective area

P8R3_SOURCE_V3 effective area at 10 GeV, averaged over ϕ

P8R3_SOURCE_V3 acc. weighted PSF

P8R3_SOURCE_V3 acc. weighted PSF

P8R3_SOURCE_V3 acc. weighted energy resolution

ENERGY RESOLUTION

P8R3_SOURCE_V3 energy resolution at 10 GeV

Because of

- the paucity of the events
- the large errors associated with detecting gamma-rays
- the brightness of the background

THE METHOD OF MAXIMUM LIKELIHOOD

STATISTICS

x r.v. distributed according to a p.d.f. $f(x; \theta)$ The functional form $f(x; \theta)$ is known but θ is known.

Likelihood function:

 $\begin{array}{ll} \mbox{Maximum likelihood}\\ \mbox{estimator} & \frac{\partial \mathscr{L}}{\partial \theta_i} = 0, \quad i = i, ..., m \end{array}$

 $\mathcal{L}(\theta) = \int f(x_i; \theta)$ i=1

The source model is considered as

 $S(E,\hat{p},t) = \sum S_i(E_i,t) \delta(\hat{p}-\hat{p}_i) + S_G(E,\hat{p}) + S_{eg}(E,\hat{p}) + \sum S_l(E_l,\hat{p},t)$

 $S\left(E,\hat{p},t\right) = \sum_{i} s_{i}\left(E_{i},t\right)\delta\left(\hat{p}-\hat{p}_{i}\right) + S_{G}\left(E,\hat{p}\right) + S_{eg}\left(E,\hat{p}\right) + \sum_{i} S_{l}\left(E_{l},\hat{p},t\right)$

point sources

The source model is considered as

The source model is considered as

 $S\left(E,\hat{p},t\right) = \sum S_i\left(E_i,t\right)\delta\left(\hat{p}-\hat{p}_i\right) + S_G\left(E,\hat{p}\right) + S_{eg}\left(E,\hat{p}\right) + \sum S_l\left(E_l,\hat{p},t\right)$

Galactic & Extragalactic backgrounds

The source model is considered as

 $S(E,\hat{p},t) = \sum S_i(E_i,t) \delta(\hat{p}-\hat{p}_i) + S_G(E,\hat{p}) + S_{eg}(E,\hat{p}) + \sum S_l(E_l,\hat{p},t)$

other sources

$$S\left(E,\hat{p},t\right) = \sum_{i} s_{i}\left(E_{i},t\right)\delta\left(\hat{p}-\hat{p}_{i}\right) + S_{G}\left(E,\hat{p}\right) + S_{eg}\left(E,\hat{p}\right) + \sum_{l} S_{l}\left(E_{l},\hat{p},t\right)$$

The model is then folded with the IRF to obtain the predicted counts in the measured quantity space (E', \hat{p}', t')

$$M\left(E',\hat{p}',t\right) = \int_{\mathrm{SR}} dE dE$$

The source model is considered as

 $d\hat{p} R\left(E', \hat{p}', t; E, \hat{p}\right) S\left(E, \hat{p}, t\right)$

 λ average # of events n # of events in each bin

The number of counts in each bin/pixel is small and it is well described by a **Poisson distribution**

K

 \mathscr{L} is the product of the probabilities of observing n_k counts in each bin (k) when the number of counts predicted by the model is m_{ν}

 $\mathscr{L} = \prod_{k} \frac{m_{k}^{n_{k}} e^{-m_{k}}}{n_{k}!} = \prod_{k} e^{-m_{k}} \prod_{k} \frac{m_{k}^{n_{k}}}{n!} = e^{-N_{\text{pred}}} \frac{m_{k}^{n_{k}}}{n!}$

 $\ln \mathscr{L} = -N_{\text{pred}} + \sum n_k \ln(m_k) - \ln(n!)$

This does not depend on the model. It can be neglected.

where $\mathscr{L}_{\mathrm{null}}$ and $\mathscr{L}_{\mathrm{src}}$ are the maximum likelihood values under the null (no additional sources) and alternative (additional source) hypothesis. In the limit of a large number of counts, Wilks' theorem states that the TS for the null hypothesis is asymptotically distributed as a χ_n^2 distribution, where n is the number of the parameters characterising the additional source

As a standalone value, \mathcal{L} is meaningless! A test statistics (TS) is defined as $TS = -2\ln\left(\frac{\mathscr{L}_{null}}{\mathscr{L}_{src}}\right)$

GLON

LC and VARIABILITY

A light curve is produced by dividing the data into time bins and applying the likelihood analysis procedure to each bin

To test the variability of a source, we define a TS_{var} index, defined as

• $\mathscr{L}_i(F_{\text{glob}})$ is the likelihood obtained in the fit over the total time

- $\mathscr{L}_i(F_i)$ is the likelihood obtained in each interval by fixing the spectral parameters and adjusting the normalization
- TS_{var} is distributed as a χ^2_{n-1} , where *n* is the number of time bins

 $TS_{var} \simeq 2 \sum_{i} \ln \frac{\mathscr{L}_{i}(F_{i})}{\mathscr{L}_{i}(F_{glob})}$

Alpha Configuration:

- CTAO-N (La Palma): 4 LSTs + 9 MSTs

CTAO-S (Chile, Panaral): 14 MSTs + 37 SSTs (+2 LSTs + 5 SSTs by PNRR CTA+)

	Small-Sized Telescope (SST)		Medium-Sized Telescope (MST)			Large-Sized Telescop
Energy range (in which sensitivity is optimized)	5 TeV – 300 TeV	Energy range (in which sensitivity is optimized)	150 GeV – 5 TeV		Energy range (in which sensitivity is optimized)	20 GeV – 150 Ge
Number of SST telescopes	37 (South)	Number of MST telescopes	14 (South) 9 (North)		Number of ICT tolescores	4 (b)= rth)
Optical design	Modified Schwarzschild-Couder	Optical design	Modified Davies-Cotton		Number of LST telescopes	4 (North)
Primary reflector diameter	4.3 m	Reflector diameter	11.5 m		Optical design	Parabolic
Secondary reflector diameter	1.8 m	Effective mirror area (including shadowing)	88 m ²		Primary reflector diameter	23.0 m
Effective mirror area	>5 m ²	Focal length	16 m		(including shadowing)	370 m ²
(including shadowing)	2.45 m	Total weight	89 t		Focal length	28 m
Total weight	2.15 m	Field of view (FlashCam / NectarCAM)	7.5 deg / 7.7 deg		Total weight	103 t
Field of view	8.8 deg	Number of pixels	1764 / 1955		Field of view	4.3 deg
Number of nixels	2048	(FlashCam / NectarCAM)	1704 / 1855		Number of pixels	1855
	2040	Pixel size (imaging)	0.17 deg	÷.	Pixel size (imaging)	0.1 deg
Pixel size (imaging)	0.16 deg	Photodetector type	PMT		Photodetector type	PMT
Telescope readout event rate	600 Hz	Telescope readout event rate before array trigger (FlashCam / NectarCAM)	>6 kHz / >7.0 kHz		Telescope readout event rate after array trigger	>7.0 kHz
Telescope data rates (readout of all pixels; before array trigger)	2.55 Gb/s	Telescope data rates (readout of all pixels; before array trigger)	12 Gb/s		Telescope data rates (readout of all pixels; before array trigger)	24 Gb/s
Positioning time to any point in the sky (>30° elevation)	70 s	Positioning time to any point in the sky (>30° elevation)	90 s		Positioning time to any point in the sky (>30° elevation)	3 0 s
Pointing precision	<7 arcseconds	Pointing precision	<7 arcseconds		Pointing precision	<14 arcseconds
Observable sky	Any astrophysical object with elevation > 24 degrees	Observable sky	Any astrophysical object with elevation > 20 degrees		Observable sky	Any astrophysical obje elevation > 24 degr

People involved in CTAO based in Bologna (in different forms/roles)

CTAO HQ. **R. Zanin** (CTAO project scientists) Few people also at IRA (G. Migliori, extragal) INAF-OAS/UniBo ~ 40 people

E. Bronzini (PhD, extragal) G. Brunelli (PhD, gal) A. Bulgarelli (software dev, ML) **M. Cappi** (CTA+ scientific resp., extragal) L. Castaldini (software dev, ML) P. Da Vela (IGMF, extragal) M. Dadina (extragal) A. Di Piano (PhD, software dev, ML) V. Fioretti (software dev, ML) P. Grandi (extragal)

S. Marchesi (gal, extragal)
C. Nanci (IGMF, extragal)
N. Parmiggiani (software dev, ML)
G. Panebianco (software dev, ML)
V. Sguera (gal)
E. Torresi (extragal)
C. Vignali (extragal)

