Unveiling the cosmic web through $Ly\alpha$ emission: from MUSE to WST

Davide Tornotti

Collaborators: M. Fumagalli, M. Fossati, A. Benitez Llambay and the MUDF team

WST: Surveying the Universe in the 2040's and beyond | 11-03-2025

ACDM COSMOLOGICAL PARADIGM

FILAMENT-DOMINATED STRUCTURE ON LARGE SCALES: «THE COSMIC WEB»

EAGLE simulation; Schaye et al. 2015

FILAMENTS FEED THE CGM THAT REGULATES THE GAS EXCHANGE BETWEEN GALAXIES AND THE SORROUNDING IGM

CONTROLS THE GALAXY GROWTH THROUGH COSMIC TIME

GENERAL GOAL:

Study the properties of the large scale structures (filaments) and the link between galaxies and their circum/inter galactic medium at $z \approx 3 - 4$

The Cosmic Web in emission: some examples

SSA22 – Umehata et al. 2019

The MUSE Ultra Deep Field survey

The MUSE Ultra Deep Field (MUDF)

ONE OF THE KEY GOALS:

image the Ly α emission from two massive nodes at $z \approx 3.22$

Observations:

- **142h** MUSE (PI Fumagalli) similar to the MUSE GTO MXDF;
- 90 orbits HST WFC3 G141 spectroscopy;
 + E125W/ E140W/imaging (DL Defalaki);
 - + F125W, F140W imaging (PI Rafelski);
- 8 orbits HST UV imaging (PI Fossati);
- 30h UVES QSO spectroscopy (PI D'Odorico);
- 27h HAWK-I K-band imaging (PI Fossati);

• ALMA Band 3 and 6 programs (PI Fumagalli, Pensabene).

Full dataset rms = 3×10^{-21} erg s⁻¹ cm⁻² Å⁻¹ pix⁻¹ (1 σ)

Full dataset rms = 3×10^{-21} erg s⁻¹ cm⁻² Å⁻¹ pix⁻¹ (1 σ)

Full dataset rms = 3×10^{-21} erg s⁻¹ cm⁻² Å⁻¹ pix⁻¹ (1 σ)

velocity [km/s]

Profile perpendicular to the filament

QSO1:
$$\log\left(\frac{M_{h}}{M_{\odot}}\right) = 12.9 \pm 0.3$$

QSO2: $\log\left(\frac{M_{h}}{M_{\odot}}\right) = 12.2 \pm 0.4$

From L-Galaxies SAM with advanced QSO recipes (Izquierdo-Villalba et al. 2020)

I - GALAXIES

Comparison with TNG-100

LAEs overdensities in the MUDF

LAEs overdensities in the MUDF

Lyman-alpha emitters (LAEs): young , star forming and low mass galaxies showing Lya emission line in their spectra.

Step 1: Catalogue of LAEs in the MUDF (more than 200 LAEs spectroscopically confirmed);

Step 2: Define overdense regions of LAEs (up to ~ 25);

Step 3: Search for extended Lya emission tracing filamentary structures.

D. Tornotti et al. in preparation

Filaments around LAEs at $z \sim 4$

Filaments around LAEs at $z \sim 4$

LAEs embedded in the filament z ~ 4

Blue dominated double peaked Ly α lines in ~ 25 % of the LAEs in the group at $z \sim 4 \rightarrow$ synthom of inflow of gas? \rightarrow enhanced star formation rate? \rightarrow slight but not evident shift in luminosity respect to a control sample.

LAEs embedded in the filament z ~ 4

- No bright CIV and Hell emission from single spectra;
- No evident CIV and Hell emission from the stacks of all spectra;

→ upper limit on AGN activity

Evidence of inflection point in the SB profiles

\rightarrow transition between CGM and IGM

The future

The future: Wide-Field Spectroscopic Telescope (WST)

Science cases

Across different redshifts (~ 2 - 4.5) and overdensities (~ 5 - 20):

- I. Tracing the cosmic web: Ly α emission from filaments on ~ 20 cMpc scales (IFS);
- II. Galaxy clustering in overdensities: large scale coeval populations on $\gtrsim 150$ cMpc scales (MOS);
- III. Ly α absorption tomography: mapping the IGM with background galaxies (MOS);

Cosmic Web Legacy survey

Time cost: ~ 10 nights/yr for 5 years (comparable to long-term investments in other major surveys)

- 2 IFS mosaic pointings: spine of the filaments on ~ 40 cMpc scales (SB_{lim} ~ $3 4 \times 10^{-20}$ erg s⁻¹ cm⁻² arcsec⁻²);
- $\sim 7000 9000$ MOS fibers for major pointings (background galaxies & coeval galaxies) and > 1/2 remain free for additional science cases: galaxy overdensity on ~ 200 cMpc scales and 3D tomography.

X/cMpc

 $(3 \times 3 \operatorname{arcmin}^2)$ Coeval galaxies ≥ 10⁹ M_☉ (~ 7000 – 9000) in MOS FoV

30 hr for single IFS pointing

Background massive galaxies $(\sim 200 - 300)$ up to $z \sim 4$

The future: Wide-Field Spectroscopic Telescope (WST)

Tracing the cosmic web on unprecedented scales

MUDF: real data

The MUSE Deep Fields have unlocked the ability to study cosmic filaments on 0 scales of the pMpc;

Summary

- We can now start to probe different environments (QSOs \rightarrow LAEs) across 0 different redshifts ($z \approx 3 - 4$);
- This breakthrough opens a completely new window, allowing us to start 0 compiling *samples* of filaments and begin constraining their properties statistically;
- WST would provide an unprecedented opportunity to achieve this on scales 0 that are currently beyond our reach.

Thanks for your attention!

d.tornotti@campus.unimib.it