

WST workshop

10-12 March 2025

Probing the limits of spectroscopy in the low-surface brightness Universe with LEWIS

Chiara Buttitta Postdoc at INAF - Capodimonte (Naples – IT)

Science case: ultra-diffuse galaxies

An **ultra-diffuse galaxy** (UDG) is empirically defined as a galaxy with a <u>size</u> comparable to that of the Milky-Way but a <u>stellar mass</u> 100-1000 times smaller

Considered as the extreme low surface brightness tail of the size-luminosity relation

 $\mu_0 \ge 24 \text{ [mag/arcsec^2] and } R_{eff} \ge 1.5 \text{ [kpc]}$

1/10

Science case: observations vs theoretical predictions What we know today on UDGs?

Colour & spatial distribution:Red UDGs located in dense environments (i.e. clusters of galaxies)Blue UDGs are found in low-density regions (groups & fields)Globular clusters populations:Wide range of properties (richer than dwarfs or dwarf-like)

Age & metallicity:

Kinematics: Dark Matter content: Old, metal-rich and quenched UDGs in dense environment Young, star-forming UDGs in low-density regions UDGs are dispersion-dominated systems HI-rich UDGs show hint of rotation Wide range of properties (DM-dominated, dwarf-like or DM free)

Science case: observations vs theoretical predictions What we know today on UDGs?

Colour & spatial distribution:

Red UDGs located in dense environments (i.e. clusters of galaxies) Blue UDGs are found in low-density regions (groups & fields) Globular clusters populations: Wide range of properties (richer than dwarfs or dwarf-like)

> Different types of UDGs Different formation channels

Age & metallicity:

Kinematics: Dark Matter content: Old, metal-rich and quenched UDGs in dense environment Young, star-forming UDGs in low-density regions UDGs are dispersion-dominated systems HI-rich UDGs show hint of rotation Wide range of properties (DM-dominated, dwarf-like or DM free)

Science case: observations vs theoretical predictions What we know today on UDGs?

Colour & spatial distribution:

Red UDGs located in dense environments (i.e. clusters of galaxies) Blue UDGs are found in low-density regions (groups & fields) Globular clusters populations: Wide range of properties (richer than dwarfs or dwarf-like)

> Different types of UDGs Different formation channels

Age & metallicity:

Old, metal-rich and quenched UDGs in dense environment Young, star-forming UDGs in low-density regions UDGs are dispersion-dominated systems Kinematics: HI-rich UDGs show hint of rotation Dark Matter content: Wide range of properties (DM-dominated, dwarf-like or DM free)

Giant and bright galaxy which lost its gas supply and evolve into an UDG

Dwarf galaxy whose stellar distribution was stretched at larger radii

Science case: observations vs theoretical predictions

What we know today on UDGs?

Photometry: ~ 3000 UDGs

Colour & spatial distribution:Red UDGs located in dense environments (i.e. clusters of galaxies)Blue UDGs are found in low-density regions (groups & fields)Globular clusters populations:Wide range of properties (richer than dwarfs or dwarf-like)

Spectroscopy: ~ 50 UDGs, only 2 UDGs with IF

Age & metallicity:Old, metal-rich and quenched UDGs in dense environment
Young, star-forming UDGs in low-density regions
UDGs are dispersion-dominated systems
HI-rich UDGs show hint of rotationDark Matter content:Wide range of properties (DM-dominated, dwarf-like or DM free)

Failed galaxy scenario

Giant and bright galaxy which lost its gas supply and evolve into an UDG

Puffed-up scenario

Dwarf galaxy whose stellar distribution was stretched at larger radii

2/10

The contribution of the LEWIS project in this field

Looking into the faintEst WIth muSe (LEWIS) On the nature of the ultra-diffuse galaxies in the Hydra I cluster

ESO Large Programme (P.I. E. Iodice) **MUSE@VLT** 133.5 hours (P108 - P110), 2021-2024

First homogenous spectrocopic survey of a complete sample of UDGs in Hydra I cluster

Project plan Validate the cluster membership

Stellar kinematics

Stellar populations

GCs properties

Challenges: what we learned with LEWIS

1: Luminosity of the target ~ sky level: Improve the sky background evaluation

For each target, custom mask injected in the ESO Reflex workflow + ZAP algorithm

Challenges: what we learned with LEWIS

1: Luminosity of the target ~ sky level: Improve the sky background evaluation 2: High quality spectra (S/N > 15) to get an unbiased measure of σ_{eff}

Monte Carlo simulations on a mock UDG-like spectrum at different S/N and different σ kernel

Groundbreaking results from LEWIS

Groundbreaking results from LEWIS

Groundbreaking results from LEWIS Stellar populations

Results from LEWIS data:

Average Age is 9.5 ± 2.7 Gyr Metal-rich group: -0.6 ± 0.3 dex Metal-poor group : -1.2 ± 0.1 dex Bimodality in metallicity & SFHs Metal-poor UDGs with long SFH are late infallers Metal-rich UDGs with short SFH are early infallers **On going project: Doll et al., in preparation**

Goran Doll

Groundbreaking results from LEWIS

GCs properties

Iodice et al. 2020, La Marca et al. 2022b

What we can do with LEWIS data:

- Confirm the membership of GCs
- Study & correlate the properties of GCs and host UDG
- Obtain a independent estimate of dark matter content _ On going project (M.Mirabile et al. in preparation)

R.A.

Fit	λ range	$V_{ m sys}$	$\langle \sigma \rangle_e$	[<i>M</i> /H]	Age
	[Å]	[km/s]	[km/s]	[dex]	[Gyr]
(1)	(2)	(3)	(4)	(5)	(6)
1D	4800-9000	3507±3	20 ± 8	-1.2 ± 0.1	10 ± 1
GC1	4800-9000	3503±12	_	-0.7 ± 0.3	9±2

Marco

Summary of the main results & Future projects

Summary of the main results & Future projects

In the early infall region, multiple populations of UDGs

Different formation channels, the environment played a key role in the evolution

A new perspective with the WST telescope

Integral field spectroscopy is essential to derive the structural properties of UDGs!

Low values of velocity dispersion ($\sigma_{eff} \sim 20-50 \text{ km/s}$) \longrightarrow high-spectral resolution! Spatial information (velocity/metallicity gradients, GCs) \longrightarrow only achievable with IF!

- Spectral resolution: R~4000-40000 (σ ~ 30-3 km/s) in λ ~ 3700-9700 Å

Integral-field spectrograph (IFS)

- Spectral resolution: R~3500 (σ ~ 35 km/s) in λ ~ 3700-9700 Å

Additional material

Additional material: observations vs theoretical predictions

Failed galaxy scenario Giant and bright galaxy which lost its gas supply and evolve into an UDG

Puffed-up scenarioDwarf galaxy whose stellar distribution wasstretched at larger radii

Iodice et al. 202

Physical processes & predicted observational properties

Internal processes				
star-formation feedback (Di Cintio et al. 2017)	gas rich, dwarf-like DM halo			
high-spin DM halo (Amorisco & Loeb 2016; Rong et al. 2017; Tremmel et al. 2019)	gas rich, dwarf-like DM halo			
<u>External mechanisms</u>				
 gravitational interactions & merging collisional debris of a merger, i.e. TDG-like (Lelli et al. 2015; Duc et al. 2014; Ploeckinger et al. 2018) ram-pressure stripped clumps (Poggianti et al. 2019) 	blue, dust, moderate metallicity, SF, UV emission & gas rich, DM-free			
 gravitational interactions & merging weak tidal interaction (Conselice 2018; Carleton et al. 2021; Bennet et al. 2018; Müller et al. 2019) high-velocity galaxy collisions (Silk 2019; Shin et al. 2020; van Dokkum et al. 2022) 	red, metal poor, gas free, DM free			
interaction with the environment (Yozin & Bekki 2015; Tremmel et al. 2020)	gas poor dwarf-like DM halo			
backsplash galaxies (Benavides et al. 2021)	quenched, isolated, gas poor, dwarf-like DM halo, near to a high density environment			

Deep photometric data & Long-slit or IF spectroscopic data can help shed the light on the formation scenario