Classify and Modeling the optical spectrum via neural network Based on arXiv:2311.04146, 2412.21130

Speaker: Fucheng Zhong ¹ Supervisor: Nicola R. Napolitano ² Collaboration: 4MOST-IWG9

¹School of Physics and Astronomy, Sun Yat-Sen University ²Department of Physics E. Pancini, University Federico II

10th March 2025

GaSNet introduction

We develop a deep-learning-based tool, "GaSNet," for optical spectrum processing. GaSNet can:

- Classify spectrum (tested on SDSS, DESI, and 4MOST), providing a wide range of classifications (>10 classes).
- Estimate redshifts with accuracy comparable to traditional methods.
- Model spectra approximately $O(10^{-3})$ times faster than classical methods.
- Estimate errors via ensemble modeling.

< □ > < □ > < □ > < □ > < □ > < □ >

High accuracy and broad-range classification

1. Coarse classification of stars, galaxies, and QSOs ($\approx 99\%$).

2. More than 10 subclass classifications with > 92% accuracy.

High redshift accuracy and efficiency compared to others

$\frac{\mathrm{MAD}_g}{/10^{-4}}$	GF_g'	MAD_q $/10^{-4}$	GF_q'	Time
3.7	0.980	-	-	0.4
0.27	0.999	4.52	0.977	<0.4
772.3	0.854	-	-	0.03
0.33	0.994	2.04	0.982	< 0.001
0.31	0.994	2.65	0.954	< 0.001
	MAD _g /10 ⁻⁴ 3.7 0.27 772.3 0.33 0.31	MADg /10 ⁻⁴ GF'g 3.7 0.980 0.27 0.999 772.3 0.854 0.33 0.994 0.31 0.994	MADg /10 ⁻⁴ GF'g 0.990 MADg /10 ⁻⁴ 3.7 0.980 - 0.27 0.999 4.52 772.3 0.854 - 0.33 0.994 2.04 0.31 0.994 2.65	MAD _g /10 ⁻⁴ GF'g 9 MAD _q /10 ⁻⁴ GF'q 9 3.7 0.980 - - 0.27 0.999 4.52 0.977 772.3 0.854 - - 0.33 0.994 2.04 0.982 0.31 0.994 2.65 0.954

$$\Delta z = \frac{|z_p - z_t|}{1 + z_t}$$

- Comparable accuracy with other methods
- Lower Median Absolute Deviation (MAD)
- Higher efficiency (> $O(10^{-3})$)

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Spectrum modeling and chi-square diagnostics

Reconstructed rest-frame spectrum and generated chi-square curves for three different classes.

(日)

What's the next?

Based on deep learning and information theory, we aim to solve the following:

- Can we recognize anomalies from latent space or residuals?
- How can we build a comprehensive framework for fully modeling and extracting parameters, including error estimation?
- Can we clearly separate noise and signal (denoising)?
- How many parameters can accurately represent a spectrum (theory limit)?

Thank you for your attention!