Three-dimensional structure and chemo-dynamical evolution of the Milky Way

ELOISA POGGIO

INAF – Osservatorio Astrofisico di Torino

How does the Milky Way look like?

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Three-dimensional structure

Credits: ESA/Gaia/DPAC, Stefan Payne-Wardenaar Artist impression based on data from ESA's Gaia space telescope

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Central bar:

Wegg et al. (2015), see also Bland-Hawthorn & Gerhard (2016)

Three-dimensional structure

Box/peanut or X-shaped bulge:

Portail et al. (2015), data from Wegg & Gerhard (2013)

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Three-dimensional structure

Known streams and overdensities in the stellar halo:

0: VOD/VSS	1: Monoceros	2: EBS	3: Her–Aq	4: PAndAS	5: Tri-And	6: Tri-And2	7: PiscesOv	8: EriPhe
9: Phoenix	10: WG1	11: WG2	12: WG3	13: WG4	14: Acheron	15: Cocytos	16: Lethe	17: Styx
18: ACS	19: Pal15	20: Eridanus	21: Tucana III	22: Indus	23: Jhelum	24: Ravi	25: Chenab	26: Elqui
27: Aliqa Uma	28: Turbio	29: Willka Yaku	30: Turranburra	31: Wambelong	32: Palca	33: Jet	34: Gaia-1	35: Gaia-2
36: Gaia-3	37: Gaia-4	38: Gaia-5	39: PS1-A	40: PS1-B	41: PS1-C	42: PS1-D	43: PS1-E	44: ATLAS
45: Ophiucus	46: Sangarius	47: Scamander	48: Corvus	50: Sgr-L10	51: Orphan	52: Pal5	53: GD-1	54: Tri/Pis
5: NGC 5466	56: Alphaus	57: Hermus	58: Hullus	59: Gatus	60: Kwando	61: Molongio	63: Murrumbidgae	63: Orinoco
45: Opniucus 55: NGC5466 64: Phlegethon	46: Sangarius 56: Alpheus 65: Slidr	47: Scamander 57: Hermus 66: Sylgr	48: Corvus 58: Hyllus 67: Ylgr	50: Sgr-LT0 59: Cetus 68: Fimbulthul	60: Kwando 69: Svol	52: Pai5 61: Molonglo 70: Fjorm	62: Murrumbidgee 71: Gjoll	

Helmi (2020), based on the Galstreams package by Mateu et al. (2018)

Credits: ESA/Gaia/DPAC, Stefan Payne-Wardenaar Artist impression based on data from ESA's Gaia space telescope

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Three-dimensional structure

The Galactic disc

Credits: ESA/Gaia/DPAC, Stefan Payne-Wardenaar Artist impression based on data from ESA's Gaia space telescope

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Galactic spiral structure

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Galactic spiral structure

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Mapping the spiral structure with Gaia

Cantat-Gaudin+2020, Hunt+2023, Cavallo+2024

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Mapping the spiral structure with Gaia

Young stellar populations

See talks by Mario Giuseppe Guarcello, Giuseppe Germano Sacco and Leonardo Testi

+

Comparison with previous models:

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Skowron et a. (2019)

Spiral structure based on Cepheids

Classical Cepheids: the archetype of the standard candle

(see for example Ripepi+2019, Inno+2021, Bono+2024 and others)

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Three-dimensional structure

Credits: ESA/Gaia/DPAC, Stefan Payne-Wardenaar Artist impression based on data from ESA's Gaia space telescope

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

Vertical structure: the Galactic warp

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

How does the Milky Way evolve?

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

A dynamically active Galactic disc

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

The perturbed Milky Way

Interaction with satellite galaxies:

Credit: Chris Mihos and Sean Maxwell (Case Western Research University)

Radial migration (Sellwood & Binney, 2002):

- 1. Blurring: perturbations -> increase epicycles (orbital heating)
- 2. Churning: non-axisymmetric features -> change in the mean orbital radius

Frankel+2018

10-12/03/2025

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond"

The radial metallicity gradient

See also Hayden+2015, Gaia Collaboration, Recio-Blanco et al. (2023)

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond

Chemical azimuthal variations: observations

-0.4

[M/H] (dex)

Gaia DR3 GSP-spec data:

See also Hackshaw et al. (2023), Barbillon et al (2023)

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond

10-12/03/2025

12

10

8

R (kpc)

Chemical azimuthal variations: observations

Gaia DR3 GSP-spec data: Gaia DR3 GSP-spec data: Data-Model 0.24 50.10 8 -0.10.05 (0.00 0.00 [W/H] Excess (dex) 2 0.05 0 Y (kpc) Δ [Fe/H] Y (kpc) 0.00 0 -0.0-2 -5-0.1 -0.10-4 0.2 -2 0 2 -4 X (kpc) -10-5EP et al. (2022) Hawkins (2023) X (kpc)

See also Hackshaw et al. (2023), Barbillon et al (2023)

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond

Chemical azimuthal variations: theory

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond

Three-dimensional structure of the Milky Way:

- bar: orientation angle between 20° and 30°, unknown length (long vs. short bar scenarios), bar/spiral arms connection
- spiral structure: no consensus on the geometry, number and location the spiral arms. Observations based on Gaia show that the local arm is longer than previously thought and the Perseus arm has a more open geometry (i.e. pitch angle) than suggested from Reid+2019, similar to Levine+2006
- warp: amplitude of the young stellar populations (Cepheids, young giants) well constrained. The structure is more uncertain for older stellar populations (e.g. red clump stars)

Chemo-kinematics of the Galactic disc:

- kinematics: great wealth of kinematic features, including vertical asymmetries, moving groups, ridges, the Gaia phase-space spiral, warp precession, waves propagating through the Galactic disc
- chemical cartography: radial metallicity gradient mapped using different stellar populations, metallicity azimuthal variations up to O.I dex, which might be due to spiral arms/bar/radial migration induced by satellites

WST can make a fundamental contribution to our understanding

of the physical processes driving Galactic evolution

Eloisa Poggio

WST Workshop: "Surveying the Universe in the 2040's and beyond