

Gravitational Wave Cosmology in the age of wide-field spectroscopic surveys

Nicola Borghi

University of Bologna

with Michele Moresco, Matteo Tagliazucchi, Andrea Cimatti

Surveying the Universe in 2040's and beyond • Naples, 10-12 March 2025

NST

Gravitational Wave Cosmology - BASICS

Direct measurement of the luminosity distance ("standard sirens") w/o additional calibrators (Schutz 1986)

$$h(t) \propto \frac{\mathcal{M}_z^{5/3} f(t)^{2/3}}{d_L} F_{+,\times}(angles) \cos(\phi(t))$$

Cosmology via the distance-redshift relation ... but **no redshift measurement** with GW data alone (degen. with masses)

→ Bright sirens: z from EM counterpart (Schutz 1986, Holz & Hughes 2005, ...)

 $\mathcal{K}_{gw}(d_L, RA, Dec)$ -17 -17 -17 -20 -20 -23 -23 -26 -20 -23 -26 -20 -24 -26 -26 -26 -27 -26 -26 -26 -26 -27 -26 -26 -26 -27 -26 -27 -26 -27 -26 -27 -26 -27 -26 -27 -26 -27 -26 -27 -27 -27 -26 -27 -27 -27 -27 -26 -27 -26 -27 -27 -26 -27 -26 -27 -27 -26 -27 -26 -27 -27 -26 -27 -26 -27 -27 -26 -27 -27 -26 -27 -27 -27 -26 -27-

→ **Bright sirens:** *z* from EM counterpart

(Schutz 1986, Holz & Hughes 2005, ...)

→ **Dark sirens:** *z* from potential host galaxies (Schutz 1986, Del Pozzo 2012, Fishbach et al. 2019, ...)

→ Bright sirens: z from EM counterpart (Schutz 1986, Holz & Hughes 2005, ...)

→ Dark sirens: z from potential host galaxies (Schutz 1986, Del Pozzo 2012, Fishbach et al. 2019, ...)

→ **Spectral sirens:** GW population modelling to break the source mass-z intrinsic degeneracy (Chernoff & Finn 1993, Taylor et al. 2012, ...)

(Schutz 1986, Del Pozzo 2012, Fishbach et al. 2019, ...) (Schutz 1986, Holz & Hughes 2005, ...) $\mathcal{K}_{gw}(d_L, RA, Dec)$ $\mathcal{K}_{gw}(z, RA, Dec|H_0)$ Galaxies -17 -17Dec [deg] Dec [deg] -20 -20 0.013 -23 -23 0.010 , Mpcl -26 -26 0.00725 $193 \cdot$ 193195195 $197 \cdot$ 0.005 $197 \cdot$ 199 199 - 100RA [deg]RA [deg]

 \rightarrow **Dark sirens:** *z* from potential host galaxies

→ **Spectral sirens:** GW population modelling to break the source mass-*z* intrinsic degeneracy (Chernoff & Finn 1993, Taylor et al. 2012, ...)

New pipeline for joint astrophysical & cosmological constraints (Borghi et al. 2024, Tagliazucchi et al., *in prep*):

- State-of-the-art forecasts for future detectors and synergies with future galaxy surveys
- Study correlations with binary and galaxy properties and explore systematics
- Parallelized and capable to handle large data sets

→ **Bright sirens:** *z* from EM counterpart

(see also icarogw, Mastrogiovanni et al. 2023 and gwcosmo, Gray et al. 2023)

In collaboration with Michele Mancarella (Aix-Marseille Univ.), Francesco Iacovelli, and Michele Maggiore (Univ. Geneva)

Gravitational Wave Cosmology – THE CONCEPT

6 total configurations, ~ 10'000 CPU hours (run at Open Physics Hub cluster @ DiFA, Univ. Bologna)

6 total configurations, ~ 10'000 CPU hours (run at Open Physics Hub cluster @ DiFA, Univ. Bologna)

(best 100 BBH events in 1 year of observation)

- z≲0.9
- sky loc. areas 10-100 deg²
- \gtrsim 500 potential hosts for 90% events
- "golden" events with 2 deg² localization

- $z \leq 1$ (but higher SNR cut!)
- sky loc. areas 1-10 deg²
- \gtrsim 50 potential hosts for 90% events
- "golden" events with ~0.5 deg² localization

Joint forecasts for LVK O4- and O5-like configurations

Fiducial values for all **12 hyperparameters** are recovered within the 68% credible levels in all configurations.

λ_i	Description	Fiducial	Prior
	Cosmology (flat ACDM)		
H_0	Hubble constant $[{ m kms^{-1}Mpc^{-1}}]$	70.0	$\mathcal{U}(10.0, 200.0)$
$\Omega_{\mathrm{m,0}}$	Matter energy density	0.25	Fixed
	Rate evolution (Madau-like)		
γ	Slope at $z < z_p$	2.7	$\mathcal{U}(0.0, 12.0)$
κ	Slope at $z > z_p$	3	$\mathcal{U}(0.0, 6.0)$
z_p	Peak redshift	2	$\mathcal{U}(0.0, 4.0)$
	Mass distribution (PowerLaw+Peak)		
α	(Primary) slope of the power law	3.4	$\mathcal{U}(1.5, 12.0)$
β	(Secondary) slope of the power law	1.1	$\mathcal{U}(-4.0, 12.0)$
δ_m	(Primary) smoothing parameter	4.8	$\mathcal{U}(0.01, 10.0)$
$m_{\rm low}$	Lower value $[M_{\odot}]$	5.1	$\mathcal{U}(2.0, 50.0)$
$m_{ m high}$	Upper value $[{ m M}_{\odot}]$	87.0	$\mathcal{U}(50.0, 200.0)$
$\mu_{ m g}$	(Primary): mean of the Gaussian peak $[{ m M}_{\odot}]$	34.0	$\mathcal{U}(2.0, 50.0)$
$\sigma_{ m g}$	(Primary): standard deviation of the Gaussian peak	3.6	$\mathcal{U}(0.4, 10.0)$
$\lambda_{ m g}$	(Primary): fraction of the Gaussian peak	0.039	$\mathcal{U}(0.01, 0.99)$

Joint forecasts for LVK O4- and O5-like configurations

Fiducial values for all **12 hyperparameters** are recovered within the 68% credible levels in all configurations.

Joint forecasts for LVK O4- and O5-like configurations

Spectral-only analysis

 Constraints on H₀ from the BBH mass distribution ~40% O4-like ~30% O5-like

Spectroscopic vs. photometric galaxy catalog

Constraints on H₀ are notably weaker
 ~ 3x for O4-like
 ~ 9x for O5-like

Spectroscopic galaxy catalog

 Constraints on H₀ in about ~1 yr of observations 7% with O4-like 1% with O5-like

Going beyond: galaxy catalog incompleteness and weighting

Borghi et al., in prep

- Incompleteness \rightarrow Wider H₀ posterior
- Weighting \rightarrow Narrower H₀ posterior (if w toward more complete sources) but potential biases when mismodelling weights (Perna et al. 2024)

- Time domain
- Cosmology (bright, dark sirens)
- Host galaxy properties

- Time domain
- Cosmology (bright, dark sirens)
- Host galaxy properties

- Cosmology (dark sirens)
- Host galaxy properties (stat.)

LVK O5 x WST

> Remapping GW localization volumes with deeper and spectroscopic observations

Improvements in dark siren measurements

+ Extension to other LCDM params.: $\Omega_{m},\,w_{0}$

Work ongoing in Euclid GW SWG

ESA/Euclid/Euclid Consortium/NASA/Planck Collaboration/A. Mellinger

LVK O5 x WST

> Remapping GW localization volumes with deeper and spectroscopic observations

Improvements in dark siren measurements

- + Extension to other LCDM params.: $\Omega_{m},\,w_{0}$
 - Work ongoing in Euclid GW SWG

ESA/Euclid/Euclid Consortium/NASA/Planck Collaboration/A. Mellinger

Constraints to modified GW propagation

Modifications in the tensor perturbation sector; can be parameterized as (Belgacem et al. 2018)

$$\frac{d_L^{\rm gw}(z)}{d_L^{\rm em}(z)} = \Xi_0 + \frac{1 - \Xi_0}{(1+z)^n}$$

LISA x WST

▶ Remapping best localized extreme mass ratio inspirals and massive BBH mergers MBHB mergers ($m_1 \sim 10^{5-6} M_{\odot}$) and EMRIs can be used as standard sirens (see LISA Redbook, 2024)

EMRIs (e.g., Laghi et al 2021)

- Full population up to z ~ 4
- Standard sirens (<2 deg², dd_L/d_L <0.1):
 - 0.1 < z < 1
 - 1-100/yr
 - $dH_0/H_0 \sim 1-10\%$

MBHBs (e.g., Tamanini+2016, Mangiagli+2021)

- Full population up to *z* ~ 10
- Up to ~5 bright sirens / yr

ET x WST

> Dark sirens with best localized events (up to $z \sim 1$), H(z)?, correlation with host properties

- O(100) events with localization area < 10 deg² up to z~0.7
- Few tens of events with < 100 galaxies in localization volume

Gravitational Wave Cosmology in the age of wide-field spectroscopic surveys - SUMMARY

GWs provide a direct measurement of H_0 and can probe H(z) via $d_L(z)$

- In Borghi et al. (2024), we present a novel pipeline (CHIMERA): joint cosmological and astrophysical population constraints with the 100 best BBH for the LVK O4and O5-like scenarios:
 - H₀ + spectroscopic galaxy catalog, ~1% with O5-like in about one year
 - H₀ + photometric galaxy catalog, ~9x weaker constraints
 - O4-like with spectroscopic catalog > O5-like with photometric
- Future wide field spectroscopic surveys may for transform GW cosmology:
 - Time domain + bright sirens with concurrent GW facilities
 - Dark sirens (H(z), modified GW propagation) also with previous GW catalogs

If you are interested join us at WST Cosmology **WP6 - Alternative probes** (Leads: Dinko Milaković, Nicola Borghi)

CHIMERA

https://chimera-gw.readthedocs.io/latest/

Cosmological and astrophysical hyperparameters correlations

- Well known degeneracy in the spectral siren case between H₀ and the peak of the mass function (see e.g., Abbott et al 2023 Cosmology paper)
- The degeneracy is broken with 100 BBHs in the case of a spectroscopic galaxy catalog