

the European Union

The promise of WST for Cosmology

mostly based on Mainieri et al. (2023) https://arxiv.org/abs/2403.05398

Michele Moresco University of Bologna, Department of Physics and Astronomy

WST Italian Workshop 10/03/2025

The most pressing open questions yesterday

Let's do the exercise of trying to project ourselves years in the future:

A search for two numbers:

All of observational cosmology is the search for two numbers: H_0 and q_0 Sandage, 1970

The most pressing open questions today

Let's do the exercise of trying to project ourselves years in the future:

A search for two numbers:

All of observational cosmology is the search for two numbers: H_0 and q_0 Sandage, 1970

- What is the nature of Dark Matter and Dark Energy (or modified GR)?
- What is the large scale structure of the Universe?
- What is the explanation for the Hubble constant tension and other cosmological ones?

The (probably) most pressing open questions tomorrow

- nature of dark matter
- MG/quantum gravity
- primordial non-gaussianity (more extended than f_{NL} local, considering scale dependencies)
- massive neutrino
- deviation from GR
- parity violation

The (probably) most pressing open questions tomorrow

- nature of dark matter
- MG/quantum gravity
- primordial non-gaussianity (more extended than f_{NL} local, considering scale dependencies)
- massive neutrino
- deviation from GR
- parity violation

What about:

- cosmological tensions in the light of stage IV surveys?
- dark energy?

Expanding the horizons

Expanding the horizons

WST Italian Workshop

Expanding the horizons

Two surveys

High-z survey (dark time):

- BAO, EDE, PNG
- QSO, z>1.5, grz+w1, ~400/deg2 (r<24)
- LBGs, ugr-drop, 2<z<5
 - ~4000/deg2 (u/g-drop)
 - ~1500/deg2 (r-drop)

Low-z program (z < 1.6) (bright/grey time)

- BGs: r-band mag limit, z<0.5, 3000/deg2
- LRGs: color-color sel. (grz+w1), 0.4<z<1.2, ~3000/deg2
- ELGs: color-color sel. (grz), 0.6<z<1.6, ~8000/deg2

Low-z + High-z: 20,000 targets/deg2

Available photometry at the time of WST: White Paper based on LSST-Y10 (ugriz: 25.5, 27, 27, 26.5, 25.5, largest overlap with WST)+CSST+Euclid

Full-sky area ~18,000 deg2 (7000 pointings)

Dark-time: High-redshift survey

 \Rightarrow 7-year observation

Grey-time: Low-redshift Legacy Surveys + Clusters

 \Rightarrow 7-year observation

1. Galaxy and Quasar Clustering + IGM/Lya-alpha forest

- a. 2-point and 3-point statistics and full-shape analysis
- b. BAO of LAE 1D auto- and cross-correlation

1. Galaxy and Quasar Clustering + IGM/Lya-alpha forest

- a. 2-point and 3-point statistics and full-shape analysis
- b. BAO of LAE 1D auto- and cross-correlation

2. Dense and underdense structures (Clusters & Voids)

- a. A combined MOS-LR+IFS survey of the growth of galaxy clusters
- b. Reconstruction of the velocity field in the periphery of the cluster with nonlinear methods
- c. Connectivity (i.e. the number of filaments) as a cosmological probe
- d. Testing gravity with gravitational redshifts
- e. Void size function, void-galaxy cross-correlation function

1. Galaxy and Quasar Clustering + IGM/Lya-alpha forest

- a. 2-point and 3-point statistics and full-shape analysis
- b. BAO of LAE 1D auto- and cross-correlation

2. Dense and underdense structures (Clusters & Voids)

- a. A combined MOS-LR+IFS survey of the growth of galaxy clusters
- b. Reconstruction of the velocity field in the periphery of the cluster with nonlinear methods
- c. Connectivity (i.e. the number of filaments) as a cosmological probe
- d. Testing gravity with gravitational redshifts
- e. Void size function, void-galaxy cross-correlation function

3. Alternative and innovative probes

- a. GW as standard sirens
- b. variation of fundamental constants
- c. ages as cosmological probes

1. Galaxy and Quasar Clustering + IGM/Lya-alpha forest

- a. 2-point and 3-point statistics and full-shape analysis
- b. BAO of LAE 1D auto- and cross-correlation

2. Dense and underdense structures (Clusters & Voids)

- a. A combined MOS-LR+IFS survey of the growth of galaxy clusters
- b. Reconstruction of the velocity field in the periphery of the cluster with nonlinear methods
- c. Connectivity (i.e. the number of filaments) as a cosmological probe
- d. Testing gravity with gravitational redshifts
- e. Void size function, void-galaxy cross-correlation function

3. Alternative and innovative probes

- a. GW as standard sirens
- b. variation of fundamental constants
- c. ages as cosmological probes

4. Synergy with Lensing and Radio Surveys

1. Galaxy and Quasar Clustering + IGM/Lya-alpha forest

- a. 2-point and 3-point statistics and full-shape analysis
- b. BAO of LAE 1D auto- and cross-correlation

2. Dense and underdense structures (Clusters & Voids)

- a. A combined MOS-LR+IFS survey of the growth of galaxy clusters
- b. Reconstruction of the velocity field in the periphery of the cluster with nonlinear methods
- c. Connectivity (i.e. the number of filaments) as a cosmological probe
- d. Testing gravity with gravitational redshifts
- e. Void size function, void-galaxy cross-correlation function

3. Alternative and innovative probes

- a. GW as standard sirens
- b. variation of fundamental constants
- c. ages as cosmological probes

4. Synergy with Lensing and Radio Surveys

transformative for the redshift range 2<z<5.5 and BAO up to z~7

innovative use of IFS +synergy with MOS

strong synergies with other facilities, WST could be enabling for some science cases (GW)

1. Galaxy and Quasar Clustering + IGM/Lya-alpha forest

- a. 2-point and 3-point statistics and full-shape analysis (see talk by Guidi)
- b. BAO of LAE 1D auto- and cross-correlation

2. Dense and underdense structures (Clusters & Voids)

- a. A combined MOS-LR+IFS survey of the growth of galaxy clusters
- b. Reconstruction of the velocity field in the periphery of the cluster with nonlinear methods
- c. Connectivity (i.e. the number of filaments) as a cosmological probe
- d. Testing gravity with gravitational redshifts
- e. Void size function, void-galaxy cross-correlation function

3. Alternative and innovative probes

- a. GW as standard sirens (see talks by Bisero and Borghi)
- b. variation of fundamental constants (see talks by Milakovic)
- c. ages as cosmological probes

4. Synergy with Lensing and Radio Surveys

transformative for the redshift range 2<z<5

innovative use of IFS +synergy with MOS

strong synergies with other facilities, WST could be enabling for some science cases (GW)

Galaxy and QSO clustering

16

Galaxy and QSO clustering

Galaxy and QSO clustering

WST Italian Workshop

10/03/2025

2035-2045

LAE auto- and cross-correlation

Dense regions: clusters

10/03/2025

WST Italian Workshop

- thousands of cluster member redshifts measured out to ~10 Mpc
- high-precision strong lensing models out to radii ≥0.5Mpc
- hundreds of multiply lensed images per cluster
- detailed maps of the filamentary structure

Dense regions: clusters

Underdense regions: voids

Voids as cosmological probes

standard approaches: void size function, void-galaxy cross-correlation function

extended approaches: void lensing, void-CMB cross-correlation, velocity profiles (reconstruction), void auto-correlation function, combination with cluster counts, 2pt and higher-order statistics, galaxy evolution in voids, galaxy spin in voids, ...

WST Italian Workshop

Beyond standard methods (1/2)

For dark sirens, a deep and complete **spectroscopic** catalog is a game-changer

see talks by Bisero and Borghi

WST Italian Workshop

Beyond standard methods (1/2)

For dark sirens, a deep and complete **spectroscopic** catalog is a game-changer

see talks by Bisero and Borghi

WST Italian Workshop

Beyond standard methods (1/2)

For dark sirens, a deep and complete **spectroscopic** catalog is a game-changer

see talks by Bisero and Borghi

Beyond standard methods (2/2)

The ages of the oldest objects in the Universe can also be used to directly measure the expansion history of the Universe.

Cosmic chronometers:

relative ages of massive and passive galaxies

H(z) = -1/(1+z) dz/dt

Cosmic clocks: ages of the oldest stars as lower limit to the age of the Universe

WST Italian Workshop

What's next?

- Identify the key open questions for 2040
- Several transformative science cases already identified, but open for new ones
- Maximize the scientific return of WST from the combination of MOS and IFS
- explore in-depth the synergies with other future facilities (ET, LISA, CTAO, SKAO, THESEUS, ACME...) and establish further contacts

WST Italian Workshop

	Primary	Nfiber	Refelction	Product	Speed	r.
	(m^2)				over DESI	
SDSS	3,68	640	0,81	1908	0,045	
BOSS	3,68	1000	0,81	2981	0,070	
DESI	9,5	5000	0,9	42750	1	
PFS	50	2400	0,9	108000	2,5	First
4MOST	12	1624	0,81	15785	0,4	Light
MUST	28	21168	0,81	487879	11,4	2030
Spec-S5	25	26000	0,81	522249	12,2	2035
WST	113	20000	0,81	1831248	42,8	2040

Join us!

https://www.wstelescope.com/for-scientists/participate and/or drop us an email! michele.moresco@unibo.it, jean-paul.kneib@epfl.ch, contarini@mpe.mpg.de