WST and Gravitational-Waves Exploring the Era of Next-Generation Observatories

WST Spectroscopic Telescope

the Wide-field

Surveying the Universe in the 2040's and beyond

Italian Workshop in memory of Bianca Garilli

GW astronomy so far..

GW170817

BNS mergers and MM events are rare!

Next generation gravitational-wave and multi-messenger astronomy

See Bailes et al. 2021, Nature Reviews Physics; Maggiore et al 2020, JCAP; Evans et al. 2021 arXiv:2109.09882; Branchesi et al. 2023, JCAP, ET blue-book 2025

ET: the European next generation GW observatory

Triangular (10 km arms) or 2L shape (15 km arms)

Underground Cryogenic Xylophone

ET Science in a nutshell

ASTROPHYSICS

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - interior structure (QCD at ultra-high densities, exotic states of matter)
 - demography
- Multi-band and -messenger astronomy
 - joint GW/EM observations (GRB, kilonova,...)
 - multiband GW detection (LISA)
 - neutrinos
- Detection of new astrophysical sources
 - core collapse supernovae
 - isolated neutron stars
 - stochastic background of astrophysical origin

FUNDAMENTAL PHYSICS AND COSMOLOGY

ET EINSTEIN

The nature of compact objects

- near-horizon physics
- tests of no-hair theorem
- exotic compact objects
- Tests of General Relativity
 - post-Newtonian expansion
 - strong field regime
- Dark matter
 - primordial BHs
 - axion clouds, dark matter accreting on compact objects
- Dark energy and modifications of gravity on cosmological scales
 - dark energy equation of state
 - modified GW propagation
- Stochastic backgrounds of cosmological origin
 - inflation, phase transitions, cosmic strings

ET blue-book, soon in arXiv

ET Science in a nutshell

Detection horizon for black-hole binaries

Closer Universe

Combination of:

- Larger distances and broader masses explored
- Increased number of detections
- Detections with very high SNR

COMPACT OBJECT BINARY POPULATIONS

BINARY NEUTRON-STAR MERGERS

Sampling astrophysical populations of binary system of compact objects along the cosmic history of the Universe

BINARY BLACK-HOLE MERGERS

 10^{5} BNS detections per year 10^{5} BBH detections per year

ET sky-localization capabilities

ET low frequency sensitivity make it possibile To localize BNS!

- O(100) detections per year with sky-localization (90% c.r.) < 100 sq. deg
- Early warning alerts!

Next generation GW effort worldwide

Cosmic Explorer: L shaped detectors, two sites (40km, 20 km [option])

Evans et al. 2021, 2023; Gupta et al. 2023

Network sky-localization capabilities

 O(1000) detections per year with sky-localization (90% c.r.) < 10 sq. deg

Branchesi et al. 2023, Dupletsa et al. 2023, Ronchini et al. 2022

Pre-merger detections

Five minutes before the merger:

- ET \rightarrow O(10) detections with sky-localization < 30 deg²
- ET+CE \rightarrow O(100) detections with sky-localization < 30 deg²

Getting closer to the merger time:

- improvement in sky localization capabilities
- more distant events can be localized

CTA and GW DETECTOR synergies

Analyzing different observational strategies: ET+CE: ten VHE early counterparts can potentially be detected using 10% of the CTA time

Banerjee, Oganesvan, Branchesi et al 2023, A&A

•

Prioritization of triggers

Sky-localization

	ET	ET+CE	ET+2CE
N _{det}	143970	458801	592565
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{\rm deg}^2)$	10	6797	154167
$N_{\rm det}(\Delta\Omega < 100~{ m deg}^2)$	370	192468	493819
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	585317

Ronchini et al. 2022, A&A

Too large numbers of triggers well localized to be followed-up

- Send in low-latency source parameters and continuous updates
- Science-case dependent prioritization
- ET will become a trigger listener

Viewing angle

Distance

MM change of paradigm

GRB EMISSION MECHANISMS, BNS BHNS COSMOLOGY and MODIFIED GRAVITY z = 1.0High-energy **Counterparts** Image Credit: Ronchini Image Credit: ET blue-book **Detectable GRBs** Detectable KN (< 26 mag in g) NUCLEOSYNTHESIS.

Optical counterparts

RELATIVISTIC JET PHYSICS,

Image credit: NASA

HIGH-ENERGY

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

COSMOLOGY and MODIFIED GRAVITY

Crucial instruments able to localize at arcmin-arcsec level to drive the ground-based follow-up!

Wide FoV X-ray telescopes (EP, THESEUS-SXI) increases the number of joint detections inlcuding off-axis GRB afterglow

Sensitive X-ray instruments such as ATHENA, AXIS require for the characterization

THERMAL EMISSION - KILONOVAE

KILONOVA PHYSICS, NUCLEOSYNTHESIS, NUCLEAR PHYISCS and COSMOLOGY

PHYISCS and COSMOLOGY

Prospects for optical detections from BNS mergers with the next-generation MM observatories

64 simulations (release in zenodo Dupletsa et al. 2024)

- Two BNS merger populations consistent with O1, O2, O3 and current LVK observations
- NS mass: Gaussian and uniform mass distributions
 - Two EoSs: BLh and APR4

with BLh producing less compact NSs and typically with larger ejecta

- 8 network of ET
 - ET- Δ ET-2LET- Δ + LVKIET-2L + LVKIET- Δ + 1CEET-2L + 1CEET- Δ + 2CEET-2L + 2CE

Loffredo, Hazra, Dupletsa, MB et al. arXiv:2212.14007

3.5

Population KN light-curves (LC)

- KNe ejecta through numerical-relativity informed fits
- Fitting formulas for GW170817 and more massive BNS systems, like GW190425
- Including prompt collapse of the remnant to black hole
- Multi-component ejecta: dynamical + spiral wind + secular

• BLh EOS → at the peak LC brighter by half to one magnitude and evolving more slowly than APR4

• Uniform NS mass distribution → high mass system, prompt collapse, fainter light curves than Gaussian

Adding GRB optical afterglows

- On-axis consistent with observed optical afterglows of short GRBs
- Number of BNS producing a jet calibrated on sample of observed short GRBs

- The afterglows outshine faintest KNe for viewing angles < 15 deg
- KNe dominate early emissions at viewing angle ≥ 20 deg
- Brightest KNe overcome a non-negligible portion of the afterglows at any angle a few hours after the merger

Injected/detected

- ET-2L 30% more detections wrt ET-triangle
- ET+LVKI negligible increase of detections wrt ET
- ET+CE about a factor 2 increase of detections wrt ET

Relatively well-localized events (sky-loc < 100 deg²)

- ET-2L twice detections wrt ET-triangle
- O(100) per year by ET
- O(10³) per year ET+LVKI
- O(10⁴) for ET+CE

Plots show 10 years of observations

Injected/detected

- ET-2L 30% more detections wrt ET-triangle
- ET+LVKI negligible increase of detections wrt ET
- ET+CE about a factor 2 increase of detections wrt ET

Relatively well-localized events (sky-loc < 100 deg²)

- ET-2L twice detections wrt ET-triangle
- O(100) per year by ET
- O(10³) per year ET+LVKI
- O(10⁴) for ET+CE

Well-localized events (sky-loc < 10 deg²)

- ET-2L three times detections wrt ET-triangle
- more detections than the ET triangl
- a few per year by ET
- O(100) per year ET+LVKI
- O(10³) for ET+CE

Networks enable to localize events up to higher z

Next-generation MM astronomy in the optical band

Faint KNe + Large GW Sky-Localization

Requirements:

1) Large (sensitive) FoV optical instruments for the counterpart search;

2) Large (sensitive) facilities for characterize the counterparts (imaging/spectroscopy).

Einstein Telescope and Vera Rubin Observatory

- multi-epochs (2 nights)
- *multi-filters (i and g)*
- ToO observations, exposure = 600 s
- mosaic to cover the GW sky-loc

- $ET-LVKI \rightarrow Rubin$ detection increase by an order of magnitude wrt ET •
- $ET-CE \rightarrow Rubin$ detection increase by 3 wrt ET+LVKI (not correspond to the • increase of well-localised events because KN limited by Rubin detection efficiency)

Joint detection efficiency

Efficiency drops to 50% already at redshift ~ 0.3

Einstein Telescope and WST

- Synergy with optical-NIR photometric observations: targeting Rubin candidates
- Stendalone-scenario: galaxies's distance consistent with GW

WST will characterize (SNR> 10) on the order of 100 events per year

SUMMARY

ET working in synergy with electromagnetic observatories will **revolutionize MM astronomy**, transforming today's rare detections into hundreds of detections per year, significantly **advancing our understanding of extreme events in the Universe**

ET 2L perform better than ET triangle increasing of factor 2-3 the number of events and the accuracy of the parameter estimation (see Branchesi et al. 2023)

ET with instrument such the Rubin Observatory and WST will probe ejected matter and KN emission advancing our knowledge in nucleosynthesis, nuclear physics and cosmology

