

Use of FPGA-based hardware for antenna arrays at Medicina Radiotelescopes

Giovanni Naldi INAF – IRA Medicina Radiotelescopes gnaldi@ira.inaf.it

Applicazioni FPGA in ambito Astrofisico Torino, May 18, 2016

Outline

- > The "Northern Cross" Medicina Radio Telescope
- FPGA-based Hardware at Medicina
- Signal Processing Algorithms for Antenna Arrays
- > Applications:
 - Direct Imager and FX Correlator for BEST-2 Array
 - Medicina Array Demonstrator
 - Space Debris Observation with Northern Cross Radio Telescope

The "Northern Cross" Medicina Radio Telescope

E/W arm Single antenna 564 m x 35 m **N/S arm** Array of 64 antennas 640 m x 23.5 m

2000 Km of steel wires to fulfill the reflective surface.

Total area = 28000 m²

N. of dipoles on the focal lines = 5632Frequency = 14 MHz @ 408 MHz

1st Generation CASPER Processing Boards...

IBOB

BEE2

- 1x Xilinx XC2VP50 Virtex II Pro FPGA
- 2x ZDOK+ connectors (for A/D)
- 2x CX4 10Gbps serial connectors
- 1x RJ45 Ethernet interface
- 1x RS232 interface
- 2x 512k x 36-bit SRAMs

- 5x Xilinx XC2VP70 Virtex II Pro FPGA
- 4x CX4 10Gbps serial connectors per FPGA
- 1x 10/100 RJ45 Ethernet interface
- 1x RS232 interface
- 4 GB of DDR2-SDRAM per FPGA

...2nd Generation CASPER Processing Boards...

ROACH-1

ROACH-2

- 1x Xilinx Virtex-5 XC5VSX95T FPGA
- 2x Z-DOK+ 40 differential pair connectors
- 4x CX4 10Gbps high-speed serial connectors
- 1x Embedded PowerPC (Linux OS) for remote monitoring, programming and control
- 1x RS232 DB9 serial port
- 1x 10/100/1000Mbit RJ45 Ethernet
- 2x 36Mbit QDRII+ SRAMs
- 1x 4GB DDR2 DRAM
- 1x Xilinx Virtex-6 XC6VSX475T FPGA
- 2x Z-DOK+ 40 differential pair connectors
- 2x Multi-gigabit transceiver break out card slots, supporting up to 8x10Ge links which may be CX4 or SFP+
- 1x Embedded PowerPC (Linux OS) for remote monitoring, programming and control
- 1x RS232 DB9 serial port
- 1x 10/100/1000Mbit RJ45 Ethernet
- 4x 72Mbit QDRII+ SRAMs connected to the FPGA
- 1x 16GB DDR3 RDIMM slot connected to the FPGA

... and ADCs

64ADCx64-12

- Atmel AT84AD001B dual 1GSPS 8-bit ADC chip
- 1x Tyco Z-DOK+ 40 differential pair connector

- 8x Texas Instruments ADS5272 8-channel, 12-bit ADC chip
- 64 inputs, 65 MSPS
- 64 Low-Voltage Differential Signal (LVDS) pairs via 2 Z-DOK connectors

Medicina Digital Back End Rack

FX Correlator ...

... FX Correlator

Correlator ("X-Engine")

Beamforming

Adjusting gain and phase (through beamformer coefficients) in each path, the antenna is electronically "steered" within the FoV (single antenna pattern).

BEST-2 Array (SKA Demonstrator)

- Planar array
- 32 receivers installed in 8 cylinders of the North-South Arm (4 rx per cyl.)
- Single polarization
- RF bandwidth: 400-416 MHz
- Optical fiber links from the antennas to the receiver room

BEST-2 Back End

ROACH #1

- Bandwidth: 20 MHz
- 1024 Frequency Channels
- Resolution Bandwidth: 19.5 KHz
- Amplitude and Phase Equalization

ROACH #2

- Direct Imager
- N. Beams Generated: 128
- N. Beams Output at full data rate: ≤8
- Throughput: 5.12Gb/s

In collaboration with Jack Hickish, Griffin Foster, Kris Zarb Adami and Andrea Mattana

MAD: Medicina Array Demonstrator

- MAD is a 3 x 3 regularly spaced antenna array
- Test bench for antenna characterization and array calibration techniques in its operative conditions
- Novel procedure based on a flying artificial test source

- Each array element receives a RF signal from a transmitting Unmanned Aerial Vehicle (UAV) (hexacopter)
- A digital FPGA-based back-end is responsible for both data-acquisition and signal processing
- Test of new calibration algorithms are performed in post-processing

MAD Digital Back-end

Roach Board (<u>https://casper.berkeley.edu/</u>)

Software Tools for Real-Time Monitoring

MAD Digital Back-end

Correlator and Beamformer Output

MAD: Some results

10

- Very good agreement between measurements and EM simulations both for the embedded element and the array beam pattern
 - Good accuracy in the array calibration
 - Validation of the calibration procedure

Northern Cross for Space Debris Observation

- SST (Space Surveillance and Tracking) European consortium (June 2015)
- EC funds (2015-2020) for the upgrade of existing assets, for construction of new facilities and for the operating cost
- Northern Cross (N/S arm) selected as the receiver part of a bistatic radar

Electronic Multi-beam with BEST-2 Array

Back-end for Orbital Determination

In collaboration with Germano Bianchi, Andrea Mattana, Alessio Magro, Kris Zarb Adami

Conclusions

Expertise in FPGA applications at Medicina

- > Shared usage of reconfigurable hardware among many projects
- Exchange of knowledge and collaborations

Thank you.