
1© 2016 The MathWorks, Inc.

Design and Verification of FPGA Applications

Giuseppe Ridinò giuseppe.ridino@mathworks.it

Paola Vallauri paola.vallauri@mathworks.it

MathWorks

Torino, 19 Maggio 2016, INAF

2

Agenda

 Model-Based Design for FPGA

 Generating HDL Code from MATLAB and Simulink

– For prototyping and production

– Optimizing code for efficiency

 Verifying HDL Designs with MATLAB and Simulink

– Co-simulation with HDL simulators

– FPGA-in-the-Loop verification

 Verifying HDL Designs outside MATLAB and Simulink

– Generating code for integration with SystemC/TLM and SystemVerilog/DPI-C

3

Model-Based Design for FPGA

INTEGRATION

ALGORITHM IMPLEMENTATION

A
L

G
O

R
IT

H
M

 T
E

S
T

 &
 V

E
R

IF
IC

A
T

IO
N

RF & AnalogHDL

TransistorMCU DSP FPGA ASIC

C/C++

ALGORITHM DESIGN

Environment Models

Timing and Control Logic

Digital Models RF ModelsAnalog Models

Algorithms

REQUIREMENTSRESEARCH

• Verify designs to detect errors

earlier in development

• Reuse testbenches

• Automate regression testing

• Generate bit-accurate models

• Explore and optimize

implementation tradeoffs

• Generate efficient code

• Model multi-domain systems

• Explore and optimize system

behavior

• Collaborate across multi-

disciplinary teams

4

It’s about Collaboration

 Usually, many engineers get involved in different parts of the design flow:

 Each brings valuable expertise from their discipline

 Model-Based Design aids collaboration across the project

– integrating the workflow

– providing the backbone of a common modelling environment

Algorithms

Systems Verification

Firmware

Etc.

5

A Typical Model Structure

 Algorithm interacts with outside environment through other components.

 Algorithm is stimulated with data

 Algorithm performance is analysed.

Algorithmic System-level Testbench

Component

Model
Analysis

Component

Model

Environment

Model

Data

Source

A
lg

o
ri

th
m

6

Algorithm Development
Generation of HDL Source Code

 HDL Coder

– Generation of synthesible RTL HDL

(VHDL or Verilog)

 Support for

– MATLAB

– Simulink

– Stateflow

 Workflow Advisor

– Guides through process

– Preparing model for generation of HDL

– Configuring HDL Generation options

– Integrated with FPGA synthesis tools for

timing annotation on model

– Configurations for turnkey FPGA targets

and IP Core generation

Algorithmic System-level Testbench

Component

Model
Analysis

Component

Model

Environment

Model

Data

Source

A
lg

o
ri

th
m

RTL HDL

(VHDL, Verilog)

HDL Coder

7

Simulink Library Support for HDL Generation

HDL Supported Blocks

 ~180 blocks supported

 Core Simulink
– Basic and Array Arithmetic, Look-Up Tables,

Signal Routing (Mux / Demux, Delays,

Selectors), Logic & Bit Operations, Dual and

single port RAMs, FIFOs, CORDICs, Busses

 Digital Signal Processing
– NCOs, FFTs, Digital Filters (FIR, IIR, Multi-

rate, Adaptive, Multi-channel), Rate Changes

(Up & Down Sample), Statistics (Min / Max)

 Communications
– Pseudo-random Sequence Generators,

Modulators / Demodulators, Interleavers /
Deinterleavers, Viterbi Decoders, Reed
Solomon Encoders / Decoders,
CRC Generator / Detector

8

 MATLAB
– Relevant subset of the MATLAB

language for modeling and
generating HDL implementations

– Useful MATLAB Function Block
Design Patterns for HDL

 Stateflow

– Modeling FSMs (Mealy, Moore)

– Different modeling paradigms

(Graphical Methods, State

Transition Tables, Truth Tables)

– Integrate MATLAB code

MATLAB & Stateflow for HDL Generation

HDL Supported Blocks

9

HDL code generation

10

Critical Path Highlighting and Design Review

 Feedback in Simulink

 Review results in synthesis tools

11

Algorithm Verification
Data-driven Verification of HDL Source Code

 Stand-alone HDL testbench

– Stand-alone

 Executable in any 3rd-party HDL simulator

– Self-contained

 Instantiated algorithmic RTL HDL (DUT)

 Input stimuli stream at DUT top-level interface

 Expected output stream at DUT top-level

interface

– Self-testing

 Checks on bit and cycle accuracy

 Handwritten or generated code

– With HDL Coder, RTL HDL and standalone

testbenches are created automatically

Algorithmic System-level Testbench

Component

Model
Analysis

Component

Model

Environment

Model

Data

Source

A
lg

o
ri

th
m

Stand-alone HDL Testbench

RTL HDL

(VHDL, Verilog)

input

stimuli

expected

outputs

==

12

Algorithm Verification
Co-simulation for Verification of HDL Source Code

 Co-simulation with 3rd-party HDL

simulator

– Reuse of existing testbench in

MATLAB/Simulink

– HDL code execution in 3rd-party HDL simulator

– Flexible HDL sources

 Handwritten or generated code

– Automated generation of co-simulation

infrastructure

– Automatic handshaking

 Combined analysis and debugging in both

simulators

Algorithmic System-level Testbench

Component

Model

Analysis

Component

Model

Environment

Model

Data

Source

A
lg

o
ri

th
m

Co-Sim

3rd-party HDL Simulator

RTL HDL

(VHDL, Verilog)

cosimWizard

(HDL Verifier),

HDL Workflow Advisor

(HDL Coder)

HDL Verifier

==

13

Co-simulation

14

Algorithm Verification
FPGA-in-the-Loop Verification of HDL Source Code

Prototype your algorithm in hardware

connected to the system-level test

environment

 FIL simulation with FPGA

development board
– Reuse existing testbench

– HDL code execution on FPGA

– Handwritten or generated HDL code

– Automated generation of co-simulation

infrastructure

 Encapsulation of algorithm within

GBit Ethernet MAC, or JTAG

– Automatic handshaking

Algorithmic System-level Testbench

Component

Model
Analysis

Component

Model

Environment

Model

Data

Source

A
lg

o
ri

th
m

FIL

filWizard

(HDL Verifier),

HDL Workflow Advisor

(HDL Coder)

HDL Verifier

HDL

15

FPGA-in-the-Loop Target Device

16

FPGA-in-the-Loop
Enable regression testing with FPGA-in-the-loop simulation

Integrate with Altera / Xilinx

FPGA Development Boards

Re-use test benches for

regression testing

Flexible test bench creation:

closed loop, multi domain

Also works with

handwritten code

17

Best Practice 1:

Algorithm and System Design

with Fixed-Point Quantization Analysis

Best Practice 2:

Automatic

HDL Code Generation

Best Practice 3:

HDL Cosimulation

Implement Design

Best Practice 4:

FPGA Hardware-in-the-Loop

Key Takeaway

18

Integrating with other Verification Activities

 Verification is the single biggest cost in hardware design

– Investment in developing simulations for verification

 SystemVerilog and UVM test frameworks

 SystemC/TLM virtual platforms

– Shift towards ‘model-based’ verification

 Enabling techniques like Constrained Random testing

 Rather than recreate a behavioural model, we can reuse the assets

developed in the system models in MATLAB & Simulink

– Maintains connection with earlier part of the flow

 Removes risk of manual error in test framework

 Avoids duplicating effort

19

SystemVerilog Testbench Environment

System Verification
Reuse of models in SystemVerilog Testbench

 Code generation translates models

to other languages

(e.g. C, HDL)

– Implementation code

– Verification models

 For verification, C code generation is

convenient

– analog and digital models

– Wider block and langauge support for C

generation

 HDL Verifier extends code

generation tools to provide wrappers

for

– SystemVerilog DPI-C

– SystemC TLM

Algorithmic System-level Testbench

Component

Model
Analysis

Component

Model

Environment

Model

Data

Source

A
lg

o
ri

th
m

Component

Model

DPI-C

HDL Verifier

Embedded Coder

DPI-C DPI-C DPI-C

20

Integrating DPI-C/SV into Existing Testbench

 Using a public SystemVerilog Testbench example*,

adapted to execute the DPI-C as a golden reference:

* Example from MicroElectronics Student Group at the University of Porto:

http://wiki.usgroup.eu/wiki/public/tutorials/svverification.

http://wiki.usgroup.eu/wiki/public/tutorials/svverification

21

Integrated Verification
Model-Based Design and SystemVerilog/SystemC

S
o
C

-L
E

V
E

L
 T

E
S

T
 &

 V
E

R
IF

IC
A

T
IO

N

SoC-LEVEL INTEGRATION

ALGORITHM INTEGRATION

ALGORITHM IMPLEMENTATION
A

L
G

O
R

IT
H

M
 T

E
S

T
 &

 V
E

R
IF

IC
A

T
IO

N

RF

Analog
HDL

TransistorMCU DSP FPGA ASIC

C/C++

MODEL GENERATION

ALGORITHM DESIGN

Environment Models

Timing and Control Logic

Digital Models RF ModelsAnalog Models

Algorithms

REQUIREMENTSRESEARCH

SystemC DPI-C

Virtual Platform SPICE

22

Zynq HW/SW Co-design Workflow Summary

Embedded System Project

Simulink Model

SW

HW
Design IP Core

Generation

FPGA IP Core

Algorithm

from

MATLAB and

Simulink

AXI Lite

Accessible

registers

External

Ports

A
X

I4
-L

it
e
 B

u
s

Processor

E
m

b
e

d
d

e
d

S
y
s
te

m

In
te

g
ra

ti
o

n

External

Ports

Generate SW

Interface Model

SW Interface Model

SW

SW I/O
Driver
Blocks

FPGA

Bitstream
SW

Build

FPGA IP Core

Algorithm from

MATLAB and

Simulink

AXI Lite

Accessible

registers

23

Summary

 Model-Based Design for FPGA

 Generating HDL Code from MATLAB and Simulink

– For prototyping and production

– Optimizing code for efficiency

 Verifying HDL Designs with MATLAB and Simulink

– Co-simulation with HDL simulators

– FPGA-in-the-Loop verification

 Verifying HDL Designs outside MATLAB and Simulink

– Generating code for integration with SystemC/TLM and SystemVerilog/DPI-C

