
1© 2016 The MathWorks, Inc.

Design and Verification of FPGA Applications

Giuseppe Ridinò giuseppe.ridino@mathworks.it

Paola Vallauri paola.vallauri@mathworks.it

MathWorks

Torino, 19 Maggio 2016, INAF



2

Agenda

 Model-Based Design for FPGA

 Generating HDL Code from MATLAB and Simulink

– For prototyping and production

– Optimizing code for efficiency

 Verifying HDL Designs with MATLAB and Simulink

– Co-simulation with HDL simulators

– FPGA-in-the-Loop verification

 Verifying HDL Designs outside MATLAB and Simulink

– Generating code for integration with SystemC/TLM and SystemVerilog/DPI-C
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Model-Based Design for FPGA
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• Verify designs to detect errors 

earlier in development

• Reuse testbenches

• Automate regression testing

• Generate bit-accurate models

• Explore and optimize 

implementation tradeoffs

• Generate efficient code

• Model multi-domain systems

• Explore and optimize system 

behavior

• Collaborate across multi-

disciplinary teams
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It’s about Collaboration

 Usually, many engineers get involved in different parts of the design flow:

 Each brings valuable expertise from their discipline

 Model-Based Design aids collaboration across the project

– integrating the workflow

– providing the backbone of a common modelling environment

Algorithms

Systems Verification

Firmware

Etc.
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A Typical Model Structure

 Algorithm interacts with outside environment through other components.

 Algorithm is stimulated with data

 Algorithm performance is analysed.

Algorithmic System-level Testbench

Component

Model
Analysis

Component

Model

Environment

Model

Data

Source

A
lg

o
ri

th
m



6

Algorithm Development
Generation of HDL Source Code

 HDL Coder

– Generation of synthesible RTL HDL

(VHDL or Verilog)

 Support for 

– MATLAB 

– Simulink

– Stateflow

 Workflow Advisor

– Guides through process

– Preparing model for generation of HDL

– Configuring HDL Generation options

– Integrated with FPGA synthesis tools for 

timing annotation on model

– Configurations for turnkey FPGA targets 

and IP Core generation
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Simulink Library Support for HDL Generation

HDL Supported Blocks

 ~180 blocks supported

 Core Simulink
– Basic and Array Arithmetic, Look-Up Tables, 

Signal Routing (Mux / Demux, Delays, 

Selectors), Logic & Bit Operations, Dual and 

single port RAMs, FIFOs, CORDICs, Busses

 Digital Signal Processing
– NCOs, FFTs, Digital Filters (FIR, IIR, Multi-

rate, Adaptive, Multi-channel), Rate Changes 

(Up & Down Sample), Statistics (Min / Max)

 Communications
– Pseudo-random Sequence Generators, 

Modulators / Demodulators, Interleavers / 
Deinterleavers, Viterbi Decoders, Reed 
Solomon Encoders / Decoders, 
CRC Generator / Detector
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 MATLAB
– Relevant subset of the MATLAB 

language for modeling and 
generating HDL implementations 

– Useful MATLAB Function Block 
Design Patterns for HDL

 Stateflow

– Modeling FSMs (Mealy, Moore)

– Different modeling paradigms 

(Graphical Methods, State 

Transition Tables, Truth Tables)

– Integrate MATLAB code

MATLAB & Stateflow for HDL Generation

HDL Supported Blocks
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HDL code generation
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Critical Path Highlighting and Design Review

 Feedback in Simulink

 Review results in synthesis tools
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Algorithm Verification
Data-driven Verification of HDL Source Code

 Stand-alone HDL testbench

– Stand-alone

 Executable in any 3rd-party HDL simulator

– Self-contained

 Instantiated algorithmic RTL HDL (DUT)

 Input stimuli stream at DUT top-level interface

 Expected output stream at DUT top-level 

interface

– Self-testing

 Checks on bit and cycle accuracy

 Handwritten or generated code

– With HDL Coder, RTL HDL and standalone 

testbenches are created automatically

Algorithmic System-level Testbench
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Algorithm Verification
Co-simulation for Verification of HDL Source Code

 Co-simulation with 3rd-party HDL 

simulator

– Reuse of existing testbench in 

MATLAB/Simulink

– HDL code execution in 3rd-party HDL simulator

– Flexible HDL sources

 Handwritten or generated code

– Automated generation of co-simulation 

infrastructure

– Automatic handshaking

 Combined analysis and debugging in both 

simulators

Algorithmic System-level Testbench
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Co-simulation
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Algorithm Verification
FPGA-in-the-Loop Verification of HDL Source Code

Prototype your algorithm in hardware 

connected to the system-level test 

environment

 FIL simulation with FPGA 

development board
– Reuse existing testbench

– HDL code execution on FPGA

– Handwritten or generated HDL code

– Automated generation of co-simulation 

infrastructure

 Encapsulation of algorithm within

GBit Ethernet MAC, or JTAG

– Automatic handshaking

Algorithmic System-level Testbench
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FPGA-in-the-Loop Target Device
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FPGA-in-the-Loop
Enable regression testing with FPGA-in-the-loop simulation

Integrate with Altera / Xilinx 

FPGA Development Boards

Re-use test benches for 

regression testing

Flexible test bench creation:

closed loop, multi domain

Also works with 

handwritten code
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Best Practice 1: 

Algorithm and System Design 

with Fixed-Point Quantization Analysis

Best Practice 2:

Automatic 

HDL Code Generation

Best Practice 3:

HDL Cosimulation

Implement Design

Best Practice 4:

FPGA Hardware-in-the-Loop

Key Takeaway
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Integrating with other Verification Activities

 Verification is the single biggest cost in hardware design

– Investment in developing simulations for verification

 SystemVerilog and UVM test frameworks

 SystemC/TLM virtual platforms

– Shift towards ‘model-based’ verification

 Enabling techniques like Constrained Random testing

 Rather than recreate a behavioural model, we can reuse the assets 

developed in the system models in MATLAB & Simulink

– Maintains connection with earlier part of the flow

 Removes risk of manual error in test framework

 Avoids duplicating effort
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SystemVerilog Testbench Environment

System Verification
Reuse of models in SystemVerilog Testbench

 Code generation translates models 

to other languages 

(e.g. C, HDL)

– Implementation code

– Verification models

 For verification, C code generation is 

convenient

– analog and digital models

– Wider block and langauge support  for C 

generation

 HDL Verifier extends code 

generation tools to provide wrappers 

for 

– SystemVerilog DPI-C

– SystemC TLM
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Integrating DPI-C/SV into Existing Testbench

 Using a public SystemVerilog Testbench example*, 

adapted to execute the DPI-C as a golden reference:

* Example from MicroElectronics Student Group at the University of Porto:

http://wiki.usgroup.eu/wiki/public/tutorials/svverification.

http://wiki.usgroup.eu/wiki/public/tutorials/svverification
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Integrated Verification
Model-Based Design and SystemVerilog/SystemC
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Zynq HW/SW Co-design Workflow Summary
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Summary

 Model-Based Design for FPGA

 Generating HDL Code from MATLAB and Simulink

– For prototyping and production

– Optimizing code for efficiency

 Verifying HDL Designs with MATLAB and Simulink

– Co-simulation with HDL simulators

– FPGA-in-the-Loop verification

 Verifying HDL Designs outside MATLAB and Simulink

– Generating code for integration with SystemC/TLM and SystemVerilog/DPI-C


