Highly Reliable System-on-Chip using Dynamical Reconfigurable FPGAs

Boyang Du David Merodio Codinachs Luca Sterpone

Politecnico di Torino CAD Group - Dipartimento di Automatica e Informatica Torino - Italy

Goal

- Analysis of Single Event Upset sensitivity of SRAMbased FPGAs
 - Identification of Single Points of Failure (SPFs)
 - Error rate estimation
- Mitigation

Outline

- 3
- Introduction: SEU scenario
- Verification and Error Rate Integrated tool (VERI-Place)
 - Configuration memory Database
 - Execution flow
 - Results and Classification
- Experimental results
 - Radiation test and Fault Injection
- Conclusions and future works

4

The bitstream

The original netlist

5

The bitstream

The corrupted netlist

6

The bitstream

□ The corrupted netlist

SEU scenario: accumulation of 2-bit

The bitstream

$0 \rightarrow 1$ $0 \rightarrow 1$

A short circuit is created B and other effects are inserted

The corrupted netlist

- SEU within the configuration memory
 - FPGA resource not affected : NO ERROR
 - □ FPGA resource affected : **ERROR**
- SEU induced architectural modification
 - Logic Element: LUT, MUX, FF Config
 - Interconnections: Switchbox

1/0 I/O٧1 V2 * [] ** [] * + 1 ++ 1 + DOCTOR HI 1 11 1 *1:*1:* H2 I/OI/O2 4 2 4 2 ≠∐ <u>+</u>∐ ≠ =П==П= # [] ## [] # 142425 1 11 1 +<u>↓</u>++<u>↓</u>+ I/O1/0 1 11 1 Let the 2 4 2 4 2 4 44 14 4 44 4 I/OI/O

FPGA array

FPGA configuration memory

Execution time

FPGA configuration memory

Execution time

FPGA array

11

FPGA array

FPGA configuration memory

SEU effect

Execution time

12

FPGA configuration memory

FPGA array

Execution time SEU effect: No error

FPGA configuration memory

FPGA array

Execution time

SEU effect: No error

14

 FPGA configuration memory
 FPGA array

 Execution time
 SEU effect: No error
 SEU effect: Error

I/O1/0 V2 +2 +2 ¢ 1 1 1 8-18 Barris I/OI/O+ (++) + (++) * * * * * * 1 11 1 -111 11 142424 2 4 3 4 3 #U = U # = □ = = □ == [] = *D##D# 1 11 1 * + + + + 1/0 I/O* 1 11 1 1 11 11 2 4 2 4 2 44-46 - 44 4 44 4 I/O1/0

FPGA array

FPGA configuration memory

Execution time SEU effect

FPGA array

FPGA configuration memory

Execution time SEU effect Scrub cycle

FPGA configuration memory

Execution time SEU effect Scrub cycle

FPGA array

FPGA configuration memory

FPGA array

Execution time SEU effect Scrub cycle

SEU effect: Error

FPGA configuration memory

Execution time SEU effect Scrub cycle

TMR M0 M1 M2 Masked error

The application of Netlist-based TMR and scrubbing is an effective solution

Drawbacks: power consumption and functional availability

21

Errors affecting the circuit outputs happen at the same time

Probability of SEU location
 Avoid of SPFs: TMR is a MUST

The proposal: VERI-Place tool

- 23
- Measurement of the Application Error Probability (AEP)
 - Number of SEUs in the FPGAs configuration memory until an output error is observed
- Analysis of different design techniques
 - Fault tolerance (DWC, TMR, XTMR,...)
 - Static
 - 🗆 Dynamic
 - Partial and dynamic

The proposal: VERI-Place tool

The proposal: VERI-Place tool

Configuration memory DB

Configuration memory DB

Device Name	Total PIP [#]	Effective PIP [#]
XC5VLX50T-FF1136	18,975,457	15,695
XC7K70E-2FBG676	29,466,958	21,081
XC7K325T-2FBG900	123,919,224	21,081

- PIPs of the whole FPGA architecture
- PIPs replica are on different CLB positions
- A PIP requires about 30-35 seconds to be decoded
 XC7K70E would require about 32 years!
- FPGA array is regular, apart from *specific* architectural PIPs
 unique PIPs of a given FPGA device are distinguishable

Configuration memory DB

Device Name	Effective PIPs [#]	Decoding [days]
XC5VLX50T-FF1136	15,695	≈6.5
XC7K70E-2FBG676	21,081	≈8.6
XC7K325T-2FBG900	21,081	≈12.3

- □ The decoding is performed on effective PIPs
- The whole PIP coding is generated calculating the configuration memory offset between different CLBs

🗱 Xilinx FPGA Editor - \\vboxsrv\shared_win7\Xilinx_Validation_Projects\test.ncd - [Array1]

PIP INT_X0Y119 SE2END2 -> FAN7

3.693.213
3.693.214
3.693.831
3.693.835

4 configuration memory bits. In order to have the PIP these bits must be fixed at logic value '1'

PIP INT_X0Y119 EL2BEG0 -> BYP4

3.693.214

3.693.813

3.693.216
3.693.810
4 configuration memory bits.
In order to have the PIP these bits must be fixed at logic value '1'

PIP INT_X0Y119 SE2END2 -> FAN7

4 configuration memory bits.

In order to have the PIP these bits must be fixed at logic value '1'

PIP INT_X0Y119 EL2BEGO -> BYP4

4 configuration memory bits. In order to have the PIP these bits must be fixed at logic value '1'

1-bit controlling multiple PIPs

- Identification of all the architecturally relevant sensitive bits
 - If affected, these configuration memory bits may change the physical structure of the circuit

37

Identification of the configuration memory bits that if affected generate a Single Point of Failure (SPF)

-- Bit Reference 13661788 Location X 60 Y 186 -- TMR Sensitive ID 1 X 60 Y 186 -- Domain 0 - Net 1: net "uAHBUART/count_reg_TR0<20>" -- PIP 1: pip INT_X60Y186 BYP_BOUNCE5 -> IMUX_B29 -- Domain 1 - Net 2: net "uAHBUART/count_reg_TR1<20>" -- PIP 2: pip INT_X60Y186 WL2BEG1 -> IMUX_B26

Calculation of the Application Error Probability

38

39

Calculation of the Application Error Probability

40

Calculation of the Application Error Probability

Calculation of the Application Error Probability

42

Calculation of the Application Error Probability

Calculation of the Application Error Probability

43

Calculation of the Application Error Probability

44_

Calculation of the Application Error Probability

45

46

Calculation of the Application Error Probability

47

B13 from ITC'99 an interface Meteo sensor

B13 circuit characteristics

	VHDL		Gate level			Fault list			
Name	# Line	# Process	Тур е	Gat e	Pi	Ро	FF	Complete	Collapse
	200	-	std	362	10	10	53	1,906	830
R13	296	5	opt	317	10	10	53	1,694	77

B13 Test Patterns details

Circuit	# Sequences	# Vectors	Fault Coverage %	Fault detected	Fault Total
B13	5	7639	81.27	1341	1650

48

Area occupation on Xilinx Virtex-5 LX50T FPGA

Circuit	Design Topology	PLAIN	XTMR	VP-XTMR	
B13	Slice FF	62/28800 - 1% 147/28800 - 1%		147/28800 - 1%	
	Slice LUTs	84/28800 - 1%	369/28800 - 1%	369/28800 - 1%	
	Slices Distribution	42/7200 - 1%	177/7200 - 2%	177/7200 - 2%	
B13 x 30	Slice FF	1590/28800 - 5%	4770/28800 - 16%	4770/28800 - 16%	
	Slice LUTs	1830/28800 - 6%	10,841/28800 - 37%	10,841/28800 - 37%	
	Slice Distribution	827/7200 - 11%	4791/7200 - 66%	4791/7200 - 66%	

- 3 different design topologies have been tested at Los Alamos
 - PLAIN : b13x30 without any type of hardening
 - XTMR: Triple Modular Redundancy version with converge option of outputs pins using Xilinx TMRTool 2.1.76
 - **VP-XTMR**: Hardening version of XTMR with replacement constraints generated by VERI-Place tool.

B13x30 - PLAIN

B13x30 – VP-XTMR

with Isolation Design Flow

52

Test Methodology

Start Impact & **XMD** Process Flash Zynq Start Monitors

RT: PLAIN - XTMR - VP-XTMR

Upset

54

breakeven point

55_

Experimental results – Plain Prediction

b13_x30 plain

Experimental results – XTMR Prediction

B13_x30_xtmr

num upset

57

Experimental results – ARM-MO

- ARM-MO processor has been tested at PSI
 - □ Available flux of proton: 7.22E6 $[p/(cm^2s)]$
 - Working frequency of 50 Mhz
 - Software: Bubble sort

Design Version	LUTs[#]	FFs[#]	BRAM[#]
Plain	3563 (12%)	961 (3%)	4 (6%)
XTMR	13,229 (45%)	2887 (10%)	12 (20%)
XTMR-VP	13,229 (45%)	2887 (10%)	12 (20%)

Experimental results – ARM Plain prediction

59

Experimental results – ARM XTMR Prediction

60

Experimental results – ARM overall results

Conclusions and future works

VERI-Place for Virtex-5LX50T is available online

- Fault injection tests executed
- Radiation test validate VERI-Place
- Specific versions released to some users
- VERI-Place is available for Zynq family
- VERI-Place for Kintex7-X7K325T is available upon request
 - Fault injection is ongoing
 - Radiation test is planned

Thank you!

Iuca.sterpone@polito.it