Accurate Analysis of SET effects on Flash-based FPGA System-on-a-Chip for Astrophysical Applications

Sarah Azimi
Boyang Du
Raoul Grimoldi
David Merodio Codinachs
Luca Fossati
Luca Sterpone
Outline

- SET effects on Flash-based FPGAs
- Single Event Transient Analysis (SETA) tool
 - Analysis
 - Mitigation
 - Experimental results
- Conclusions and future activities
SET effect

Solar Energetic Particles
(Solar Particle Events or Coronal Mass Ejections)
SET effect

Radiation particles: Heavy ions, neutrons, protons
A Single Event Transient (SET) is generated by the injunction of charge collection.

- A charged particle crosses a junction area.
- It generates an amount of current, provoking a “glitch.”
- SET can be indistinguishable from normal signal and exist for notable distances.

SET width
SET amplitude
Rise $\Delta V/\Delta T$
Fall $\Delta V/\Delta T$
SET effect

Generation of the radiation-induced phenomena
SET effect

Generation of the radiation-induced phenomena
SET effect

- Analysis and mitigation of the SEE on Flash-based FPGAs
 - Type and radiation incidence angle
 - LET
 - Technology

![Diagram showing particle strikes on Flash-based FPGAs]
Circuits on Flash-based FPGAs

Flash configuration memory

FPGA array
Circuits on Flash-based FPGAs

Flash configuration memory

FPGA array

Configuration process
SET scenario

- Considering a place and route design on FPGA
 - Fixed logic cells
 - Defined number of routing segments

Source of SET
SET scenario

- Considering a place and route design on FPGA
 - Fixed logic cells
 - Defined number of routing segments
SET scenario

- Considering a place and route design on FPGA
 - Fixed logic cells
 - Defined number of routing segments
SET Propagation through gates

Fist Region: \(\text{If}(\tau_n < k*tp) \text{ then } \tau_{n+1} = 0 \)

Second Region: \(\text{If } (\tau_n > (k+3)*tp) \text{ then } \tau_{n+1} = \tau_n + \Delta tp \)

Third Region: \(\text{If } ((k+1)*tp < \tau_n < (k+3)*tp) \text{ then } \tau_{n+1} = (\tau_n^2 - tp^2)/\tau_n + \Delta tp \)

Fourth Region: \(\text{If } (k*tp < \tau_n < (k+1)*tp) \text{ then } \tau_{n+1} = (k+1)*tp(1 - e^{(k - (\tau_n/tp))}) + \Delta tp \)

For a 1→0→1 transition \(\Delta tp \) is defined as:
\[\Delta tp = tpHL - tpLH \]

For a 0→1→0 transition \(\Delta tp \) is defined as:
\[\Delta tp = tpLH - tpHL \]

Source of SET
Propagatiob through gates
Propagation through routing
SET classification on FFs or IOs
SET Propagation through gates

Fist Region: If $\tau_n < k*tp$ then $\tau_{n+1} = 0$

Second Region: If $(\tau_n > (k+3)*tp)$ then $\tau_{n+1} = \tau_n + \Delta tp$

Third Region: If $((k+1)*tp < \tau_n < (k+3)*tp)$ then $\tau_{n+1} = (\tau_n^2 - tp^2)/\tau_n + \Delta tp$

Fourth Region: If $(k*tp < \tau_n < (k+1)*tp)$ then $\tau_{n+1} = (k+1)*tp(1 - e^{(k-(\tau_n/tp))}) + \Delta tp$

For a $1\rightarrow 0\rightarrow 1$ transition Δtp is defined as:

$\Delta tp = tp_{HL} - tp_{LH}$

For a $0\rightarrow 1\rightarrow 0$ transition Δtp is defined as:

$\Delta tp = tp_{LH} - tp_{HL}$

Source of SET

Propagation through gates

Propagation through routing

SET classification on FFs or IOs
SET Propagation through routing

- Source of SET
- Propagation through gates
- Propagation through routing
- SET classification on FFs or IOs

[Sterpone et al, RADECS 2014]
SET Propagation through routing

Gate to Gate Broadening Coefficients

<table>
<thead>
<tr>
<th>Gate to Gate</th>
<th>Broadening [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFA – G1</td>
<td>-0.128</td>
</tr>
<tr>
<td>G1 – G2</td>
<td>0.458</td>
</tr>
<tr>
<td>G2 – G4</td>
<td>0.070</td>
</tr>
<tr>
<td>G2 – G3</td>
<td>-0.090</td>
</tr>
<tr>
<td>G3 – G6</td>
<td>0.480</td>
</tr>
<tr>
<td>G6 – G7</td>
<td>0.092</td>
</tr>
<tr>
<td>G7 - FFC</td>
<td>0.140</td>
</tr>
<tr>
<td>G4 – G5</td>
<td>-0.094</td>
</tr>
<tr>
<td>G5 - FFB</td>
<td>0.130</td>
</tr>
</tbody>
</table>

FFs maximal broadening pulses

<table>
<thead>
<tr>
<th>Flip-Flop</th>
<th>Maximal Pulse [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFB</td>
<td>0.436</td>
</tr>
<tr>
<td>FFC</td>
<td>0.952</td>
</tr>
</tbody>
</table>

[Sterpone et al, RADECS 2014]

Propagation Induced Pulse Broadening

Source of SET

✓ Propagation through gates

SET classification on FFs or IOs
SET Propagation through routing

Propagation Induced Pulse Broadening

Gate to Gate Characterization

Source of SET

- Propagation through gates
- Propagation through routing
- SET classification on FFs or IOs

[Sterpone et al, RADECS 2014]

Gate to Gate Broadening Coefficients

<table>
<thead>
<tr>
<th>Gate to Gate</th>
<th>Broadening [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFA – G1</td>
<td>-0.128</td>
</tr>
<tr>
<td>G1 – G2</td>
<td>0.458</td>
</tr>
<tr>
<td>G2 – G4</td>
<td>0.070</td>
</tr>
<tr>
<td>G2 – G3</td>
<td>-0.090</td>
</tr>
<tr>
<td>G3 – G6</td>
<td>0.480</td>
</tr>
<tr>
<td>G6 – G7</td>
<td>0.092</td>
</tr>
<tr>
<td>G7 - FFC</td>
<td>0.140</td>
</tr>
<tr>
<td>G4 – G5</td>
<td>-0.094</td>
</tr>
<tr>
<td>G5 - FFB</td>
<td>0.130</td>
</tr>
</tbody>
</table>

FFs maximal broadening pulses

<table>
<thead>
<tr>
<th>Flip-Flop</th>
<th>Maximal Pulse [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFB</td>
<td>0.436</td>
</tr>
<tr>
<td>FFC</td>
<td>0.952</td>
</tr>
</tbody>
</table>
SET Propagation through routing

Propagated Induced Pulse Broadening

Gate to Gate Characterization

Source of SET
✓ Propagation through gates
✓ Propagation through routing
SET classification on FFs or IOs

[Sterpone et al, RADECS 2014]

<table>
<thead>
<tr>
<th>Gate to Gate</th>
<th>Broadening [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFA – G1</td>
<td>-0.128</td>
</tr>
<tr>
<td>G1 – G2</td>
<td>0.458</td>
</tr>
<tr>
<td>G2 – G4</td>
<td>0.070</td>
</tr>
<tr>
<td>G2 – G3</td>
<td>-0.090</td>
</tr>
<tr>
<td>G3 – G6</td>
<td>0.480</td>
</tr>
<tr>
<td>G6 – G7</td>
<td>0.092</td>
</tr>
<tr>
<td>G7 - FFC</td>
<td>0.140</td>
</tr>
<tr>
<td>G4 – G5</td>
<td>-0.094</td>
</tr>
<tr>
<td>G5 - FFB</td>
<td>0.130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flip-Flop</th>
<th>Maximal Pulse [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFB</td>
<td>0.436</td>
</tr>
<tr>
<td>FFC</td>
<td>0.952</td>
</tr>
</tbody>
</table>
A tool has been developed:

- Single Event Transient Analyzer (SETA)

Source of SET
- Propagation through gates
- Propagation through routing
- SET classification on FFs or IOs
SETA tool

- Netlist
- Constraints
- Physical Design Description (PDD)
- Gate PIPB Characterization

Source of SET
- Propagation through gates
- Propagation through routing
- SET classification on FFs or IOs
SETA tool

- Netlist
- Constraints
- Physical Design Description (PDD)
- Sensitive nodes selection
- Gate PIPB Characterization

Source of SET
- ✓ Propagation through gates
- ✓ Propagation through routing
- SET classification on FFs or IOs
SETA tool

- **Netlist**
- **Constraints**
- **Physical Design Description (PDD)**
- **Sensitive nodes selection**
- **SET propagation**

Gate PIPB Characterization

- **Source of SET**
 - Propagation through gates
 - Propagation through routing
 - SET classification on FFs or IOs
SETA tool

Netlist

Constraints

Physical Design Description (PDD)

Sensitive nodes selection

SET propagation

Gate PIPB Characterization

Source of SET
✓ Propagation through gates
✓ Propagation through routing
SET classification on FFs or IOs
SETA tool

- Netlist
- Constraints
- Physical Design Description (PDD)
- Sensitive nodes selection
- SET propagation
- Gate PIPB Characterization

Source of SET
- Propagation through gates
- Propagation through routing
- SET classification on FFs or IOs
SETA tool

- Netlist
- Constraints

Physical Design Description (PDD)

- Sensitive nodes selection
- SET propagation

Gate PIPB Characterization

- Propagation is performed up to “terminal” nodes (IOs / FFs)

Source of SET

- Propagation through gates
- Propagation through routing
- SET classification on FFs or IOs
SETA tool

Source of SET
✓ Propagation through gates
✓ Propagation through routing
SET classification on FFs or IOs
SETA tool

Netlist

Physical Design Description (PDD)

Sensitive nodes selection

SET propagation

Constraints

Gate PIPB Characterization

SET classification on FFs or IOs

Source of SET

✓ Propagation through gates

✓ Propagation through routing

✓ SET classification on FFs or IOs
The classification identifies the number of SET:

- Totally filtered
- Partially filtered
- Equally propagated
- Broadened
SETA results – EUCLID project

Combinational Path - Single Event Transient sensitivity

Filterged: Filtered, Partially Filtered: Partially Filtered, Equal: Equal, Broadened: Broadened
SETA results – EUCLID project

- Analysis of the integral fluency expected for the duration of the mission: expected EUCLID duration is 6.25 years
- Linear Energy Transfer distribution calculated using CREME96

![CREME 96 LET Spectra](image)

<table>
<thead>
<tr>
<th>Resource</th>
<th>SET Normalized cross-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Segment</td>
<td>1.31E-10</td>
</tr>
<tr>
<td>VersaTile</td>
<td>2.60E-08</td>
</tr>
</tbody>
</table>
SETA results – EUCLID project

Transient Error cross-section per module

Circuit module
SETA results – EUCLID project

Combinational Path - Single Event Transient sensitivity

- **Total number of analyzed SET**
- **Type of SET per injected pulse**
SELECTIVE GUARD GATE (GG) MAPPER

Inserting a GG logic structure in the input of the selected FF

[Sterpone and Du, IEEE ETS 2014]
SET: mitigation solution 1

- Selective guard gate (GG) mapper
 - Inserting a GG logic structure in the input of the selected FF

Filtering estimated on the basis of the SETA report
SET: mitigation solution 2

- Accurate placement acting on the critical paths
- Distance between gates is modified in order to maximize the electrical filtering effect

\[\Delta T_{\text{tot}} = \Delta T_1 + \Delta T_2 + \Delta T_3 + \Delta T_4 \]
Accurate placement acting on the critical paths

- Distance between gates is modified in order to maximize the electrical filtering effect

\[\Delta T_{tot} = \Delta T_1 + \Delta T_2 + \Delta T_3 + \Delta T_4 \]
Accurate placement acting on the critical paths

Distance between gates is modified in order to maximize the electrical filtering effect

\[\Delta T_{\text{tot}} = \Delta T_1 + \Delta T_2 + \Delta T_3 + \Delta T_4 \]
SET: mitigation results

RISC average 0.83 ns SET sensitivity - A3P250 array 48 128

Average SET sensitivity

Different place and route constraints
SET: mitigation results

Average SET sensitivity

Different place and route constraints

Original RISC circuit

Post SETA RISC circuit

RISC average SET sensitivity on A3P250 array 48 128
SET: mitigation results

Effective mitigation of SET

Different place and route constraints
SET: mitigation radiation test results

- Heavy ions test performed at the Cyclotron of the Université Catholique de Louvain (UCL)
 - Kripton ion with a fluence of 3.04E8 (particles)
 - Average flux 1E4 (particles/sec)
 - RISC working frequency of 20MHz on ProASIC3 A3P250

<table>
<thead>
<tr>
<th>RISC processor version</th>
<th>SEE Cross-section [MeV cm²/mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unhardened</td>
<td>1.45E-9</td>
</tr>
<tr>
<td>Full TMR + GG</td>
<td>6.37E-10</td>
</tr>
<tr>
<td>Our Approach</td>
<td>3.12E-12</td>
</tr>
</tbody>
</table>
SET: in conclusion...

- SETA tools are available
 - Effective analysis of SET propagation
 - Effective overall SET mitigation
SET: in conclusion...

- SETA tools are available
 - Effective analysis of SET propagation
 - Effective overall SET mitigation

Very Good
SET: in conclusion...

- SETA tools are available
 - Effective analysis of SET propagation
 - Effective overall SET mitigation
SET: in conclusion...

- SETA tools are available
 - Effective analysis of SET propagation
 - Effective overall SET mitigation

X Source of SET
✓ Propagation through gates
✓ Propagation through routing
✓ SET classification on FFs or IOs
Physical Design Description

- The circuit is modeled as a graph
 - Cell functionality
 - Routing model
SET generation phenomena

- Particle hitting a sensitive node
 - Generate a SET pulse
 - Propagates through the logic
SET generation phenomena

- SET generation is related to
 - Linear Energy Transfer (LET)
 - VersaTile architecture
 - Technology

[Azimi, Du, Sterpone, Micro Rel, 2015]
[Azimi and Sterpone, IEEE DDECS 2016]
Why SET generation?

- The type of source SET is mandatory to understand the exact type of propagation
 - Mitigation GG insertion is related to SET length
- It is necessary to establish the absolute SET count
 - Calculation of the realistic IOs/FFs error rate for the whole space mission duration
Why SET generation?

Combinational Path - Single Event Transient sensitivity

Filtered Partially Filtered Equal Broadened
Identification of source SET length

Effective source SET designer must care
Identification of effective SET counts

Combinational Path - Single Event Transient sensitivity

Effective source SET designer must care
Thank you!

- luca.sterpone@polito.it