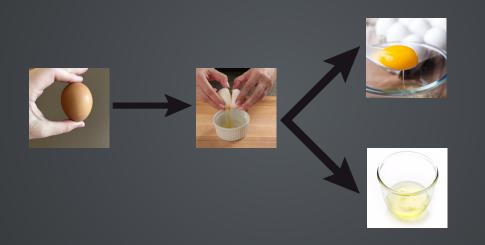
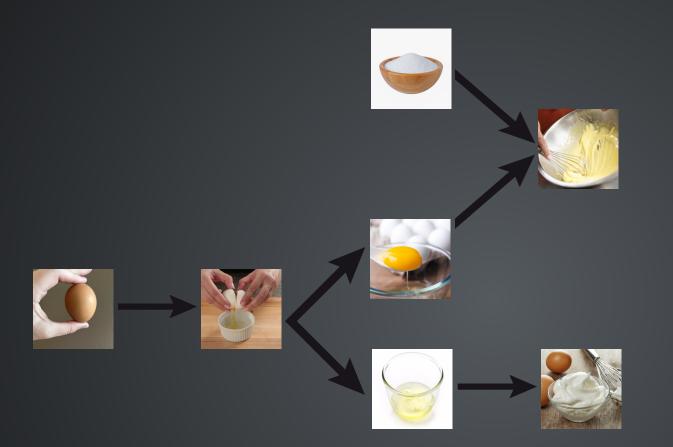
WORKFLOW MANAGEMENT SYSTEMS In the big data era

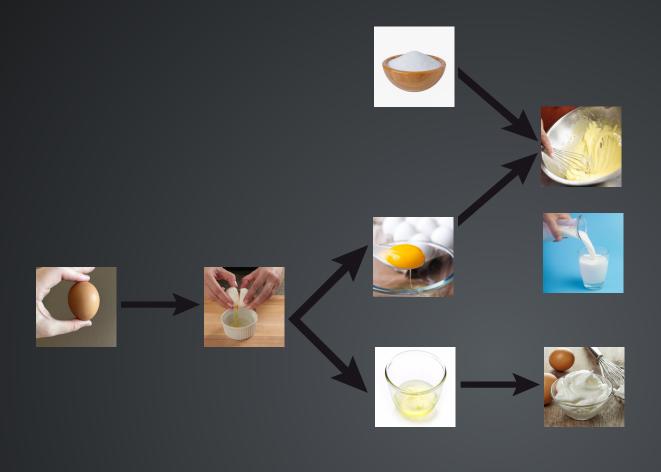
Andrea Bignamini & the IA2 Team INAF

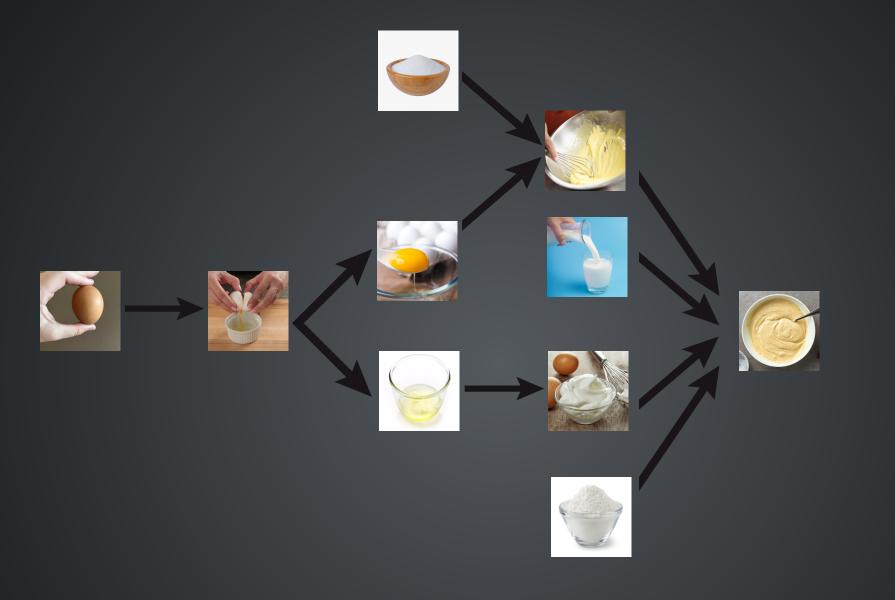
Archives and Data Management Systems in the Big Data Era Bologna 26-28 February 2025

WHAT IS A WORKFLOW MANAGEMENT SYSTEM?

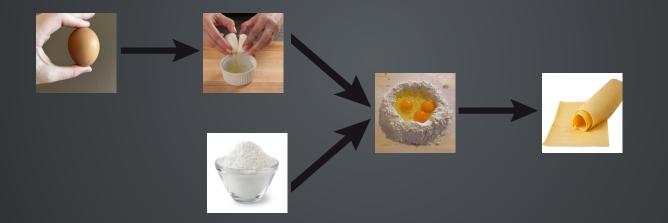

- Definition:
 - A Workflow Management System (WMS) is a tool that automates, coordinates, and monitors complex processes from start to finish.
- Key Components:
 - Task Automation: Executes repetitive tasks efficiently.
 - Dependency Management: Organizes workflow steps based on logical relationships.
 - *State Monitoring*: Provides visibility into progress and intermediate results.
- Common Applications:
 - Data Analysis Pipelines: Allows users to create and manage complex data analysis workflows, enabling researchers to process large datasets efficiently.
 - Reproducibility: Automates workflows to reduce manual intervention and ensures reproducibility of results by documenting each step in the process.
 - Access to Computational Resources: WMS can be configured to run on different computational infrastructures. This means users can leverage powerful computational resources to handle large datasets and complex analyses.
 - Integration of Software and Tools: Allows users to integrate numerous tools and software into their workflows.
 This flexibility enables researchers to select the best tools for their specific analyses.

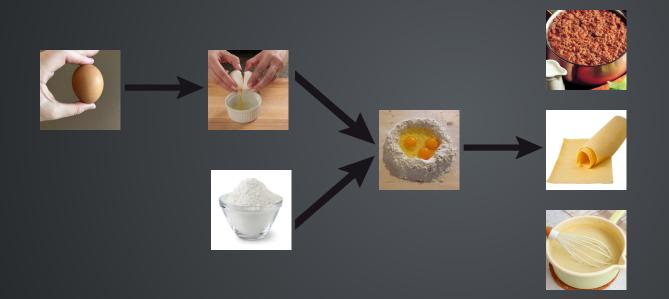

WORKFLOW EXAMPLE 1


Get an egg



You got pancakes!


WORKFLOW EXAMPLE 2


Get another egg

You got lasagna!

INGREDIENTS OF A WORKFLOW

- A complex process is divided into elementary jobs (tools).
- Each job receives *inputs* and produces *outputs*.
- Jobs are organized in a *chain* (workflow) where the output of a job is the input of the next job.
- In the workflow execution, the jobs are organized in *dependency*.
- Each tool can be used in the construction of *different workflows*.

INGREDIENTS OF A WMS

- **Platform for workflow design and monitoring**: This platform provides a user-friendly interface for designing the steps of your analysis, and then allows you to monitor the progress of your workflow as it executes.
- Managing connections: This is where the magic happens. A WMS acts as a bridge between:
 - Users: It allows you to access and manage your workflows, data, and resources.
 - Data resources: It helps you manage your data, including storing, accessing, and sharing it securely.
 - Software: It provides access to a library of tools and software packages that can be incorporated into your workflows.
 - Computational resources: It allows you to utilize computing power, such as servers or clusters, to run your workflows efficiently.

- **GAPS** (*Global Architecture of Planetary Systems*) is a long-term program for the comprehensive characterization of the architectural properties of planetary systems as a function of the hosts' characteristics (mass, metallicity, environment):
 - more than 80 INAF and associated scientists in Italy, and from foreign institutes
 - more than 20.000 HARPS-N spectra at TNG since August 2012
- **Request**: customizable data reduction of GAPS private data with appropriate spectral line mask and options
 - HARPS-N reduced data are available through the TNG archive managed by IA2
 - ...but only data reduced with default input parameters
 - ...and HARPS-N DRS (Data Reduction Software) pipeline is not public

- **GAPS** (*Global Architecture of Planetary Systems*) is a long-term program for the comprehensive characterization of the architectural properties of planetary systems as a function of the hosts' characteristics (mass, metallicity, environment):
 - more than 80 INAF and associated scientists in Italy, and from foreign institutes
 - more than 20.000 HARPS-N spectra at TNG since August 2012
- **Request**: customizable data reduction of GAPS private data with appropriate spectral line mask and options
 - HARPS-N reduced data are available through the TNG archive managed by IA2
 - ...but only data reduced with default input parameters
 - ...and HARPS-N DRS (Data Reduction Software) pipeline is not public

- **GAPS** (*Global Architecture of Planetary Systems*) is a long-term program for the comprehensive characterization of the architectural properties of planetary systems as a function of the hosts' characteristics (mass, metallicity, environment):
 - more than 80 INAF and associated scientists in Italy, and from foreign institutes
 - more than 20.000 HARPS-N spectra at TNG since August 2012
- **Request**: customizable data reduction of GAPS private data with appropriate spectral line mask and options
 - HARPS-N reduced data are available through the TNG archive managed by IA2
 - ...but only data reduced with default input parameters
 - …and HARPS-N DRS (Data Reduction Software) pipeline is not public

- **GAPS** (*Global Architecture of Planetary Systems*) is a long-term program for the comprehensive characterization of the architectural properties of planetary systems as a function of the hosts' characteristics (mass, metallicity, environment):
 - more than 80 INAF and associated scientists in Italy, and from foreign institutes
 - more than 20.000 HARPS-N spectra at TNG since August 2012
- **Request**: customizable data reduction of GAPS private data with appropriate spectral line mask and options
 - HARPS-N reduced data are available through the TNG archive managed by IA2
 - ...but only data reduced with default input parameters
 - …and HARPS-N DRS (Data Reduction Software) pipeline is not public
- **Solution**: deploy a WMS at IA2 to manage:
 - access to GAPS private data
 - access to HARPS-N DRS usage without distributing the code

YABI

- Yabi is a 3-tier application stack to provide users with an intuitive, easy to use, abstraction of compute and data environments. Developed at the <u>Centre for Comparative Genomics and Murdoch University</u>, Yabi has been deployed across a diverse set of scientific disciplines and high performance computing environments
- For Yabi deployed at IA2 we need to
 - Divide in steps the HARPS-N DRS pipeline
 - Create tools in Yabi to run these steps
 - Providing entry points to set input custom parameters
 - Manage user access to tools and data through fine-grained authorization levels (backends, credentials, toolsets)
- In the Yabi interface directories users can find:
 - Proprietary reduced data subdivided by observation nights and targets
 - Standard tools and masks and any proprietary tools and masks (i.e. tools and masks developed by a user are only available to that user)

YABI STATISTICS

UPDATED TO 2025-02-25

- Yabi has evolved over the years
- Yabi access extended to all HARPS-N users
 - 375 total users
 - 157 active users
- New tools and masks developed also by users
 - 14 tools, 8 different types of workflows
 - 40 custom masks developed by users
 - 14019 workflows executed since March 2014

3 LEVELS OF AUTHORIZATIONS IN YABI

1. User access to data

- Input data (i.e. proprietary raw data from archive)
- Output data

2. User access to computational resources

- 3. User access to software (tools)
 - Open software
 - Licensed software
 - Software developed by users

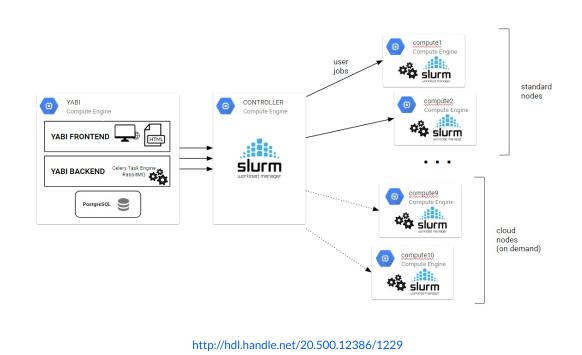
AUTHORIZATIONS FOR DATA AND COMPUTATIONAL RESOURCES

BACKENDS, CREDENTIALS AND BACKEND CREDENTIALS

- The Yabi Backend is a demon that provides execution and file services to the Yabi stack
 - It abstracts away the details and complexity of individual protocols and resources
 - 3 types of Backend: execution, storage and null (for fileselector tools)
 - Several schema and connectors: localex, localfs, PBSPro, SGE, Torque, SSH, SFTP, Slurm, Amazon S3, OpenStack Swift
- Each Yabi Credential <u>belongs to a Yabi user to allow that user to have access to Backends</u> (i.e. to execute workflows or to access data)
 - In the Credential table all the fields will be needed, depending on the credential type: e.g. ssh key, certificate or user-passwd
- The Yabi Backend Credential is a linking table between a Credential and a Backend
 - To allow a user to use a Backend, you need to connect the user Credential to the Backend through a Backend Credential
 - A Backend Credential may also define additional rules (e.g. define user's Default Stageout as a single directory where all the user's results will be staged out to)

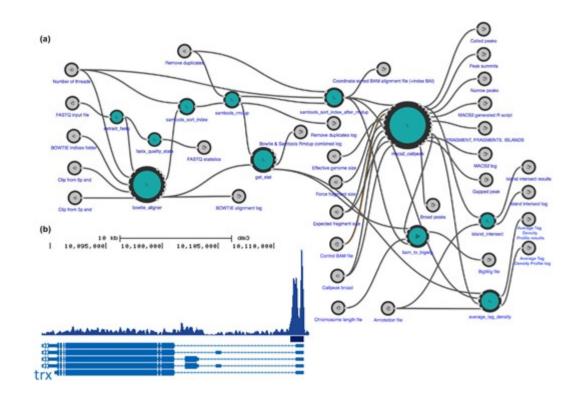
AUTHORIZATION FOR SOFTWARE

TOOLSETS AND TOOLGROUPS


- Tools are the elements the user builds the workflow. Each tool collects only information about itself:
 - A description of the tool, and the parameters it accepts and it returns
 - Information about how to run the tool on a backend and the file system backend where outputs are saved
- Toolsets are groups of users that determine which tools they have access to
 - All users in a toolset share the same privileges to access tools
 - Any user can belong to more than one toolset
- **Toolgroups** determine:
 - How tools are grouped in the user interface
 - Which users can use which tools
 - Each tool in a toolgroup is assigned to a toolset, i.e. to a group of users that have access to that tool

MAIN BENEFITS OF WMS

- Zero Code Workflow Design: The final user does not have the bother of software installation or hardware configuration, but he can just focus on scientific analysis
 - *Reduce errors* on recurrent and redundant manual tasks
 - *Reproducibility* of results
- Remote Data: No need to retrieve locally huge amount of data from remote archive
- **Remote Computational Resources**: Exploit larger computational resources
 - Export the workflow (e.g. json, YAML) and move it to another data centre to be run
- Single Software Version: All users of a collaboration agree on a single software version
 - Remember! ICT GitLab is availabe to all INAF users https://www.ict.inaf.it/gitlab
 - News! There is a fancy Git/GitLab course available here http://gitlab-school.pages.ict.inaf.it/howto-gitlab
- **Private Software**: Hide proprietary software behind curtains of A&A layers


YABI POC ON GOOGLE CLOUD PLATFORM

- Proof of Concept "Yabi Workflow Execution on Google Cloud Platform" to run data reduction pipelines on TNG archive data
 - Goals: simplify infrastructure management (SaaS/PaaS) and software deployment (Docker), optimizing and balancing the scalability of the service (Slurm and Kubernetes)
 - Results: excellent scalability and good costs (total estimated charges of 200 EUR/month to maintain architecture up and running on GCP)
 - **Criticalities**: needs to write data reduction <u>pipeline optimized for</u> <u>containerization</u>

HOW TO GET THE MOST OUT OF YOUR WORKFLOWS IN THE CLOUD

- A monolithic pipeline can exploit only scalability at workflow level
- A pipeline splitted into atomic tools can exploit scalability at job level
- It needs a paradigm shift in pipeline writing (e.g. microservices, microcontainer)

Rabix representation of a workflow (Kotliar et al. 2019) DOI:10.1093/gigascience/giz084

WMS AND FAIRNESS

- Several WMSs are available, targeted to specific experiments or scientific communities (Taverna, Kepler, Galaxy, Pegasus, etc.)
- WMSs may have a low level of interoperability, implying difficulties in terms of reusability and reproducibility of scientific results
- Within ASTERICS-H2020 Project we worked on a prototype CWL (Common Workflow Language) integration in Yabi
 - CWL is a standard, it can provide an high level of interoperability between WMS and portability across different hardware environments
 - CWL supports natively Docker, which makes it appealing in the cloud paradigm
 - CWL is excellent for jobs that must be run periodically

~					
Yabi - A Work Pipeline	flow Managem	ent System and W	orkflow Engine	for Data Re	ductio
PAGE HITS: 948	DEVELOPER: INAF	CENCE: GNU GPL V3			
Download Lastest Rel					
GitHub Repository					
INTRODUCTION					
Yabi is a 3-tier applic	ation stack to provide	users with an intuitive, easy	to use, abstraction of co	mpute and data e	nvironme
Developed at the Ce	ntre for Comparative G	Senomics, Yabi has been dep			
	nputing environments. A2 Data Center to allow	accredited users to run HAR	PS-N and GIANO-R date	a reduction pipelin	es on priv
and public data from		accreated users to full MAR	and Givero-D Udli	a reauction pipelin	es on ph
YABI ARCHITECTUR	F				
Yabi key features are					
 simply web based 					
easy tool addition					
•		e resources ie. PBSPro, SGE	, Torque, SSH, SFTP, An	1azon S3, Swift	
	rkflow creation environn sists of three componer				
	1				
		though a command line client browser. All traffic is via HTT			
	the same way as a web ies are used to maintair		- 3, and users are require	ed to log in to activ	aid g
		web application based on Dja	ingo framework.		
		elery Task Engine to queue u	-	n to the appropriat	e executi
backend via R					
Authentication mecha	anisms available for Yab	oi are:			
Database authenti	cation				
LDAP authenticati					
Kerberos and LDA					
		ORKFLOW MANAGEMENT			
		sks, research communities ha t and so unlikely reusable. Th			
system to be interope	erable with other workflo	ow management systems, to i	rely on a widely accepted		
	-	d with workflow management	systems.		
Yabi describes and m	anages jobs with an int	ernal MySQL database.			
		L) is not natively supported i	n Yabi, tools, jobs, work	flows, etc. can be	e exporte
	e easily translated in C ¹ d transfer of workflows	WL and vice versa. from other workflow manage	ment systems, like Gala	ky, to Yabi is also i	possible i
		Automated Workflow Transfe			
CONTACT					
Andrea Bignamini					

work flow-management-system-and-work flow-engine-

data-reduction-pipeline

WMS IN THE BIG DATA ERA

WMS may play a crucial role in addressing the challenges of the Big Data Era: Volume, Velocity, and Variety.

- Scalability: WMS handles large-scale data using HPC and cloud infrastructures, dynamically allocating resources as needed.
- **Distributed Processing**: It supports parallel execution of tasks across multiple machines, enabling efficient processing of big data pipelines.
- **Data Integration**: WMS facilitates the integration of diverse and heterogeneous datasets from various sources, ensuring seamless analysis.
- **Real-Time Processing**: It manages time-sensitive workflows, enabling near-real-time analysis for streaming data applications.
- Adaptability: WMS can adapt to dynamic workflows where task sequences may change based on intermediate results or external conditions.
- FAIR Principles: WMSs should adopt interoperable standard to describe their workflows (i.e. CWL) and they should ensure that workflows adhere to the FAIR principles.

CONCLUSIONS AND DISCUSSION TOPICS

- Workflow Management Systems are great ...
 - Reproducibility of results
 - Zero Code Workflow Design
 - Reduce errors
 - Great potential for use in the Cloud
 - Export workflow descriptions and move them to another data centre
- ... but they can go bad
 - Need to to write data reduction pipeline optimized for containerization and WMS
 - Need to <u>improve interoperability</u> and standardize workflow description (CWL)
- Keep data close to computational resources
 - How to allow access to <u>remote data resources</u>?
 - How to run workflows on data stored in <u>geographically distributed</u> sites?
- How to provide user access to perform **custom data reduction on public data**?
- Which data policy applies to output data of custom reduction on public data?
 - Which data quality for data reduced by WMS? Who provides and guarantees it?