Towards FAIRness of radio data in the SKA era

V. Galluzzi, A. Zanichelli (INAF Radio Data Archive WG Coordinator), C. Knapic (INAF-IA2 Coordinator), M. Molinaro (VObs.it Coordinator) SRCNet Orange-Azure: F. R. Vitello (PO), G. Tudisco (SM), R. Butora (Dev)

V. Galluzzi – Archives and Data Management Systems in the Big Data Era (CNR – Area della Ricerca di Bologna, 28/02/2025)

Summary

- 1. The INAF radio telescopes Data Archive
- 2. The IVOA Radio Interest Group
- 3. SRCNet Orange and Azure activities for archiving SKA Data
- 4. Concluding remarks

The archival system

C New search Help

Simple search

File name

Name resolver

RA

Obs date

Frequency [MHz]

Object name

From

From

hh:mm:ss.ss

VLBI-IT search SD search Pulsar and transients search

Dec

yyyy-MM-dd

Resolve

韴

1.4

and they

To

To

dd:mm:ss.ss

SAMP broadcast

0.0

ie the eduGAIN or OrcID I

Login or Register to RAP facility

=

Radius (arcmin)

yyyy-MM-dd

Your files o - Currently not logged in

Rows displayed

Remote Authentication Portal

GMS (Group Membership Service)

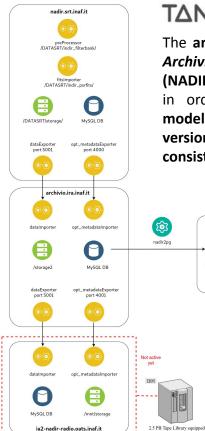
G f in

Use these Logos to Login or Register to the RAP facility with

your social identity

O Need help? Please read our User guide and EAQ.

Login

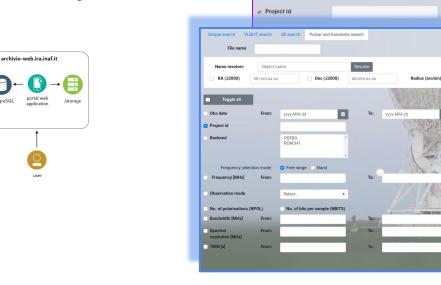

Reset

20 .

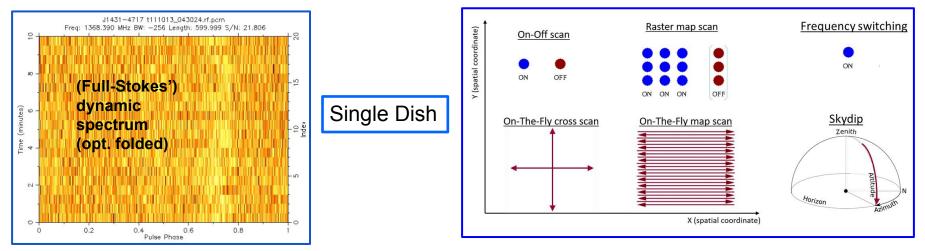
Use the IA2 Logo to Login if yo

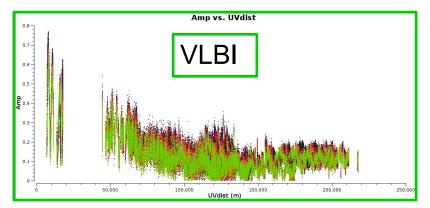
have an account provided by IA2 is

self registered

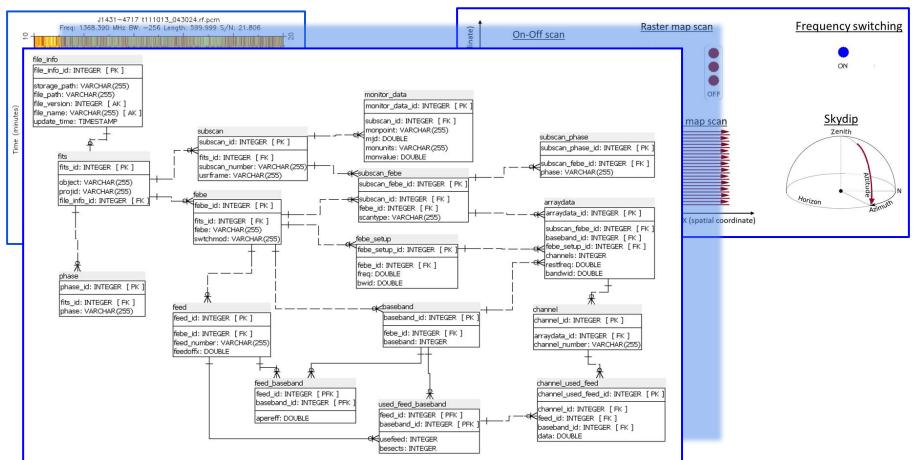


TANGA


PostgreSQL


with IBM Spectrum Archivers

The archival system is based on the New Archiving Distributed InfrastructuRe (NADIR), explicitly designed to be flexible in order to cope with evolving data models, formats, publication policies, versions and metadata contents, keeping consistencies among different sites.



Observational data products

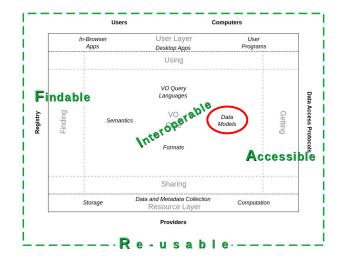
Observational data products

IVOA Radio Interest Group

(Chair: Mark Kettenis - JIVE)

Considered data variety and complexity in the radio domain, as well as little integration and utilization within the VO framework, the IVOA Radio Interest Group (RIG) was established in May 2020.

The Radio Interest Group aims to bridge the gap between radio astronomy's specific data needs and the Virtual Observatory framework by:


- **Defining and promoting radio-specific data handling within the VO.** This includes developing use cases for data exploration, access, and visualization, and identifying necessary metadata standards.
- Serving as a central point of contact. The group fosters collaboration between radio astronomy projects and the IVOA, encouraging the adoption of VO standards.
- **Facilitating knowledge sharing.** Through dedicated sessions at IVOA meetings, the group promotes discussion and development related to radio astronomy data.

Towards Virtual Observatory: ObsCore Data Model

- IVOA identified Observational Data Model Core Components and turned them into metadata to describe data products generated by astronomical observations (<u>ObsCore DM</u>)
- These metadata, implemented as a tabular view deployable through TAP, allow interoperable discovery and access of observational data in VO registered archives (ObsTAP)
- Core components and tabular interface were derived from a collection of use cases
- Core metadata (mandatory, suggested and optional) characterise datasets by product type and their spatial, temporal, energy observable axis (polarization can also be described); minimal provenance information is also made available

Courtesy of Marco Molinaro (IVOA TCG Chair)

ObsCore DM

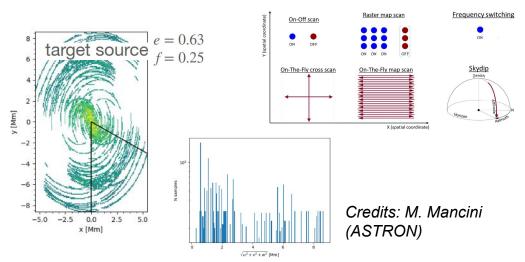
Column Name	Unit	Type	Description	
dataproduct_type unitless String		String	Logical data product type (image etc.)	
		Calibration level {0, 1, 2, 3, 4}		
obs_collection unitless String		String	Name of the data collection	
obs_id	unitless	String	Observation ID	
		Dataset identifier given by the publisher		
access_url	unitless	String	URL used to access (download) dataset	
access_format unitless		String	File content format (see in App. BB.5.2)	
access_estsize	kbyte	integer	Estimated size of dataset in kilo bytes	
target_name	unitless	String	Astronomical object observed, if any	
s_ra	deg	double	Central right ascension, ICRS	
s_dec	deg	double	Central declination, ICRS	
s_fov	deg	double	Diameter (bounds) of the covered region	
s_region	unitless	String	Sky region covered by the data product (expressed in ICRS frame)	
s_xel1	unitless	integer	Number of elements along the first spatial axis	
s_xel2 unitless in		integer	Number of elements along the second spatial axis	
s_resolution	arcsec	double	Spatial resolution of data as FWHM	

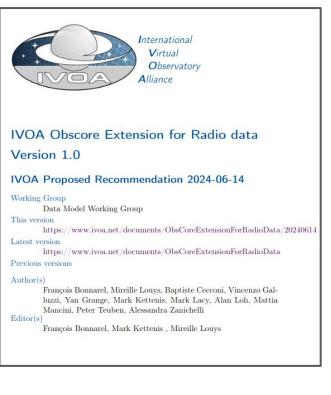
Spatial characterization

ObsCore DM

Column Name	Unit	Туре	Description
t_min	d	double	Start time in MJD
t_max	d	double	Stop time in MJD
t_exptime	S	double	Total exposure time
t_resolution	S	double	Temporal resolution FWHM
t_xel	unitless	integer	Number of elements along the time axis
em_min	m	double	Start in spectral coordinates
em_max	m	double	Stop in spectral coordinates
em_res_power	unitless	double	Spectral resolving power
em_xel	unitless	integer	Number of elements along the spectral axis
o_ucd	unitless	String	UCD of observable (e.g. phot.flux.density, phot.count, etc.)
pol_states	unitless	String	List of polarization states or NULL if not applicable
pol_xel	unitless	integer	Number of polarization samples
facility_name unitles		String	Name of the facility used for this observation
instrument_name unitle		String	Name of the instrument used for this observation

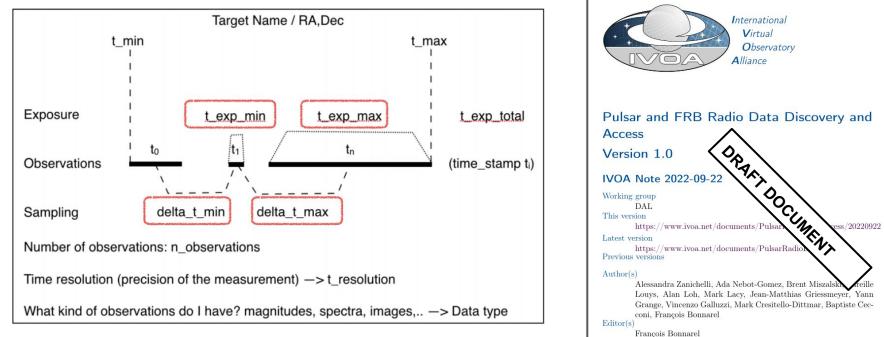
Time characterization


Energy/spectral characterization


Polarization characterization

Mapping radio data onto ObsCore DM - I

- ObsCore DM is not sufficient for describing radio data (both SD and interferometric ones):
 - missing data products types (e.g. spatial profile)
 - scanning strategies (e.g. for SD observations)
 - variability of spatial coverage/resolution with wavelength/frequency
 - uv-coverage characterization



Document prepared by the IVOA Radio Interest Group (RIG)

Mapping radio data onto ObsCore DM - II

• Following up discussions in the Time Domain Interest Group (TDIG), a proposal for an ObsCore DM extension for time-domain data is currently under discussion.

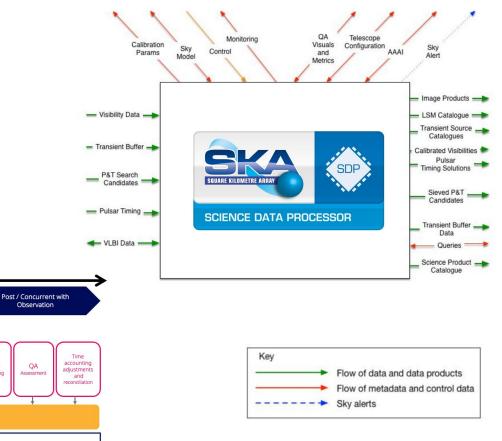
(Courtesy of Ada Nebot - CDS)

Towards SKA: data product types identification/classification

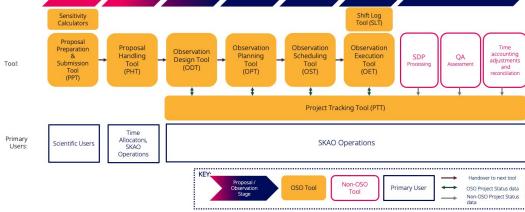
- Relevant documents for Observatory Data Products (ODPs) are:
 - <u>SKA-TEL-SKO0001818</u>, SKAO Science Data Products: a summary
 - <u>Science Data Processor anticipated data</u> products: A quick guide for SWG members

Observation

Design


Proposal

Preparation


Activity:

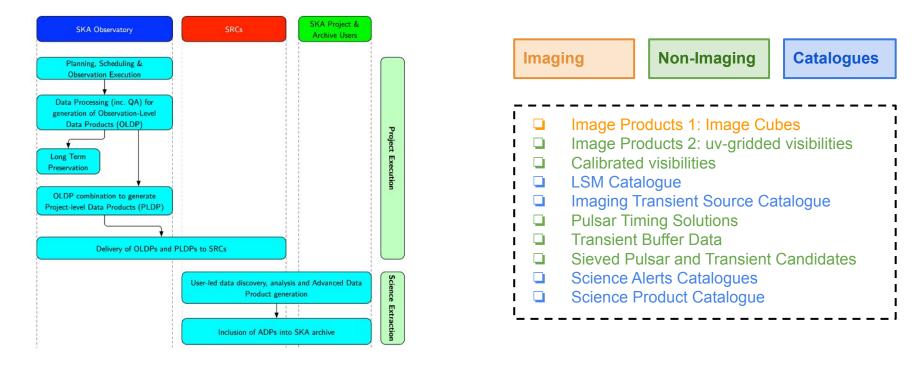
Proposal

Assessment

Data and metadata fluxes through SDP (*cf.* Fig.3 of <u>SKA1 SDP High Level Overview</u>)

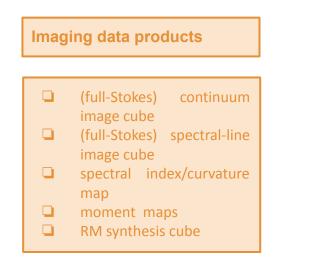
TIME

Observation


Planning

Observation Scheduling Observation

Execution


Towards SKA: data product types identification/classification

- Relevant documents for Observatory Data Products (ODPs) are:
 - SKA-TEL-SKO0001818, SKAO Science Data Products: a summary
 - Science Data Processor anticipated data products: A quick guide for SWG members

SKA Data products identification/classification

- Three broad categories (from the perspective of visualization tools)
- Further classification arising from the consideration of SKA Precursors and Pathfinders (both observational and enhanced/advanced level)

Non-Imaging data products

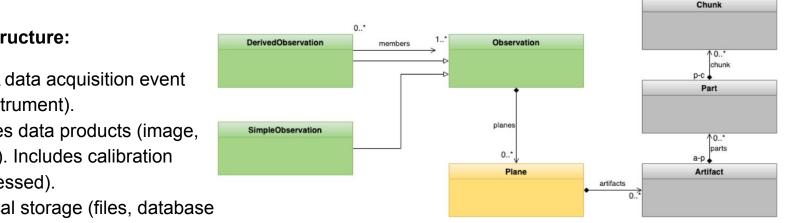
- raw/calibrated visibilities
- raw voltages (Transient Buffer Data)
- uv-gridded visibilities
- dynamic spectrum
- Lime serie
- SED/(full-Stokes) spectrum
- SLED

- Pulsar Timing solutions
- power spectrum
- position-velocity diagram
 - ... (any other plot)

Catalogues

source/component catalogues

- time-ordered catalogue
- Science Alert catalogue

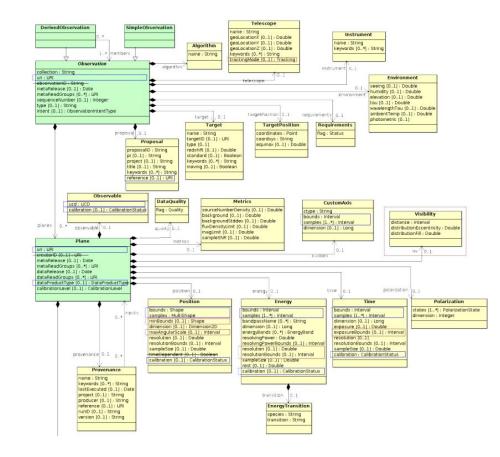

SKA precursors and pathfinders data collections

- Data collections (also including somewhat high volume data) from the SKA precursors and pathfinders, as well as from the SKA Science Data Challenges made available from WG6 and SWGs.
- For each data collection we extracted useful information for visualization showcase:

Id	ld overlapping	Short description	Data format	Characteristic data size	SKA Science WG	Links for data access	Notes
MKT-MGCM	ASK-RACS-DR1	MeerKAT Galactic Centre Mosaic. It provides: - uncalibrated and calibrated visibilities; - continuum imaging data products. - spectral index map and associated errors	Visibilities: MS Images: FITS, HiPS	~1 GB per image data product	OG	https://archive-qw-1.kat.ac.za/public/repo sitory/10.48479/fyst-hj47/index.html HiPS available at the URL (both image and spectral index): https://alaskybis.cds.unistra.fr/MeerKAT/ CDS_P_MeerKAT_Galactic-Centre-spectral- index	The visibilities are solely available through the MeerKAT Archive, which requires registration.
ASK-RACS-DR1	VLA-VLASS	RACS-low DR1 data from ASKAP	Images: FITS and HiPS Catalogue: XML	~ 750 MB	CM, EC, OG	https://research.csiro.au/racs/home/data- 2/racs-low-dr1-data/	
LOF-LoTSS-DR2	VLA-VLASS Ape-DR1	LoTSS DR2 from LOFAR	FITS, HIPS	~ 600 MB per image	CM, EC, MG	https://lofar-surveys.org/dr2_release.html HiPS access https://hips.astron.nl/ASTRON/P/lotss_dr 2_high	

Towards the SKA Science Data Archive: CAOM

- The Common Archive Observation Model (CAOM) is an open source metadata framework, • developed as a collaborative effort among STScI, ESAC and CADC.
- Designed to describe and organize observational metadata in archives.
- Enables efficient search and retrieval of astronomical data.
- Tracks data provenance, relationships, and essential metadata.


- **Hierarchical Structure:**
- •**Observation:** A data acquisition event (telescope + instrument).
- •Plane: Describes data products (image, cube, spectrum). Includes calibration level (raw, processed).
- •Artifact: Physical storage (files, database entries).
- Part: a logical subcomponent of an Artifact (e.g. a FITS extension).
- •Chunk: a single data array using WCS

Towards the SKA Science Data Archive: CAOM

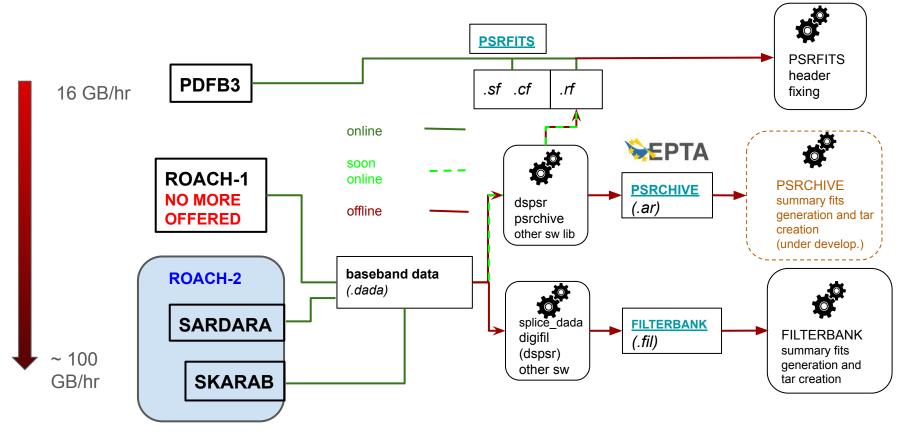
- The Common Archive Observation Model (CAOM) is an open source metadata framework, developed as a collaborative effort among STScI, ESAC and CADC.
- Designed to describe and organize observational metadata in archives.
- Enables efficient search and retrieval of astronomical data.
- Tracks data provenance, relationships, and essential metadata.

Recent Developments:

- CAOM 2.5: Enhanced support for radio data.
- Improved archive queries for science users.

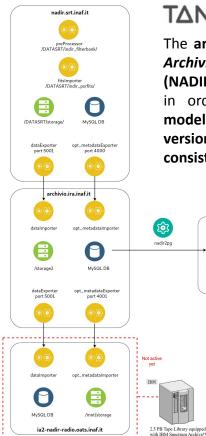
Mapping SDP metadata onto CAOM 2.5

- Joint effort among SRCNet Red and Azure to map SDP metadata (encompassing ObsCore DM and its extension) onto CAOM 2.5.
- Ongoing discussions with Science Data Processor (SDP) and Observatory Science Operations (OSO) people to identify relevant metadata and its source.


CAOM 2.5 Field	SDP Field or Obscore EfR Field or Description	To Be Provided by SDP	To Be Provided by OSO	Generated by SRCNet		
OBSERVATION	SDP Fields from schema at https://gitlab.com/ska-telescope/sdp/ska-sdp-dataproduct-metadata					
	Obscore Extension for Radio Data Fields from https://www.ivoa.net/documents/ObsCoreExtensionForRadioData/					
	Red indicates missing from SDP and/or needs discussion, see https://docs.google.com/document/d/1gkLH3QNfuON	OxIIfJNCZNKKAPa4xPWH4dDHYvmv	wsTvY/edit?usp=sharing			
D	Generated by CAOM ingestion code	FALSE	FALSE	TRUE		
collection	One collection for all ODPs?	FALSE	FALSE	TRUE		
ni	SDP obs_id in uri format. May not equal SDP Execution Block if `multiple' observartions per EB	TRUE	FALSE	FALSE		
netaRelease		FALSE	TRUE	FALSE		
netaReadGroups		FALSE	TRUE	FALSE		
equenceNumber	NULL	FALSE	FALSE	FALSE		
/pe	"object"	TRUE	FALSE	FALSE		
ntent	"science" or "calibration"	TRUE	FALSE	FALSE		
lgorithm.name	This is the algorithm of the observation, often set to exposure, but could be set to something useful	TRUE	FALSE	FALSE		
elescope.name	SDP facility_name	TRUE	FALSE	FALSE		
elescope.geoLocationX	This will be a constant giving the location of the core (not dependent on sub-arrays) so can be provided by SRCNet	FALSE	FALSE	TRUE		
elescope.geoLocationY	This will be a constant giving the location of the core (not dependent on sub-arrays) so can be provided by SRCNet	FALSE	FALSE	TRUE		
lescope.geoLocationZ	This will be a constant giving the location of the core (not dependent on sub-arrays) so can be provided by SRCNet	FALSE	FALSE	TRUE		
elescope.keywords	This is a place to store telescope info such as sub-array or number of antennas	TRUE	FALSE	FALSE		
elescope.trackingMode	Obscore EfR tracking_mode or scan_mode	TRUE	FALSE	FALSE		
nstrument.name	SDP instrument_name	TRUE	FALSE	FALSE		
strument.keywords	Could be a place to store any particular setups of the receivers or back-ends.	TRUE	FALSE	FALSE		
nvironment.name	NULL	FALSE	FALSE	FALSE		
nvironment.humidity	NULL	FALSE	FALSE	FALSE		
nvironment.elevation	NULL	FALSE	FALSE	FALSE		
nvironment.tau	NULL	FALSE	FALSE	FALSE		
nvironment.wavelengthTau	NULL	FALSE	FALSE	FALSE		
nvironment.ambientTemp	NULL	FALSE	FALSE	FALSE		
nvironment.photometric	NULL	FALSE	FALSE	FALSE		
oposal.ID	SDP proposal_id	TRUE	FALSE	FALSE		
oposal.project		FALSE	TRUE	FALSE		
roposal.PI		FALSE	TRUE	FALSE		
roposal.title	SDP obs_title	TRUE	FALSE	FALSE		
roposal.keywords		FALSE	TRUE	FALSE		
roposal.reference		FALSE	TRUE	FALSE		

Concluding remarks

- Italian radio telescopes are undergoing a phase of significant updates and refurbishment (active surface, multi-beam, multi-band receivers, *Next Generation Croce del Nord*)
- Thanks to new instrumentation data rates are up ~TB/hr
- The INAF radio data archive currently contains SD and pulsar data from Medicina and SRT observed between 2018 and 2021. 2022 data are going to be published soon.
- INAF Radio Data Archive WG is contributing to many IVOA activities:
 - ObsCore DM extension for radio data
 - discovery of time-domain data
 - activity in Semantics WG (e.g. for dataproduct_type/sub-type, o_ucd)
- SRCNet Team Orange developed a visualisation services for a high user demand and data volume environment, using flexible local computational resources.
- SRCNet Team Azure is working to deploy the Italian SRCNet node and, in collaboration with other teams is developing/improving SRCNet components (e.g. setting the stage for the SKA Science Data Archive with Team Red)


Extra slides

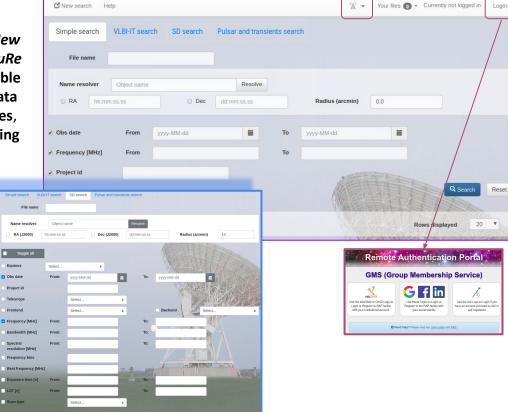
Pre-ingestion procedures: example for time-domain data

The archival system

SAMP broadcast

TANGO

archivio-web.ira.inaf.it


PostgreSQL

portal web

application

/storage

The archival system is based on the New Archiving Distributed InfrastructuRe (NADIR), explicitly designed to be flexible in order to cope with evolving data models, formats, publication policies, versions and metadata contents, keeping consistencies among different sites.

Internal data model for time-domain data

• The metadata of an observation are all written in the header of the primary HDU of a FITS file (in case of FILTERBANK or PSRCHIVE, we produce an accompanying FITS file containing only a primary header PSRFITS-like).

ID	column_name	type	HDU	keyword 1	keyword 2	description
1	TELESCOP	varchar	0	TELESCOP	TELESCOP	Telescope name
2	DATE_OBS	varchar	0	DATE-OBS	DATE-OBS	Date of observation (YYYY-MM-DDThh:mm:ss UTC)
3	OBSERVER	varchar	0	OBSERVER	OBSERVER	Observer name(s)
4	OBS_MODE	varchar	0	OBS_MODE	OBS_MODE	(PSR, CAL, SEARCH)
5	BACKEND	varchar	0	BACKEND	BACKEND	Backend ID
6	RA_C	varchar	0	RA	RA	Right ascension (hh:mm:ss.ssss)
7	DEC_C	varchar	0	DEC	DEC	Declination (-dd:mm:ss.sss)
8	EQUINOX	double	0	EQUINOX	EQUINOX	Equinox of coords (e.g. 2000.0)
9	PROJID	varchar	0	PROJID	PROJID	Project name
10	OBSFREQ	double	0	OBSFREQ	OBSFREQ	Centre frequency for observation [MHz]
11	OBSBW	double	0	OBSBW	OBSBW	Bandwidth for observation [MHz]
12	SCANLEN	double	0	SCANLEN	SCANLEN	Requested scan length (E) (N.B.: diff. from MBFITS) [s]
13	SRC_NAME	varchar	0	SRC_NAME	SRC_NAME	Source or scan ID
14	NPOL	int	0	SUBINT.NPOL	SUBINT.NPOL	Nr of polarisations
15	TBIN	double	0	SUBINT.TBIN	SUBINT.TBIN	Time per bin or sample [s]
16	NBITS	int	0	SUBINT.NBITS	SUBINT.NBITS	Nr of bits/datum (SEARCH mode 'X' data, else 1)
17	CHAN_BW	double	0	SUBINT.CHAN_BW	SUBINT.CHAN_BW	Channel/sub-band width [s]
18	OBSDATAFORMAT	varchar	0	OBSDATAFORMAT	OBSDATAFORMAT	Data format of the observation