Squeezing information from radio surveys to probe the primordial Universe

Dionysis Karagiannis with Roy Maartens, Shun Saito, José Fonseca, Stefano Camera, Chris Clarkson

arxiv: 2406.00117

SKA Cosmology SWG meeting 9 November 2024

Statistics of the primordial perturbations

Standard inflation ~ Gaussian

 $<\zeta(k)\zeta(k')>=\delta(k+k')P_{\zeta}(k)$

More complex models ~ non Gaussian

 $<\zeta(k_1)\zeta(k_2)\zeta(k_3)>=\delta(k_1+k_2+k_3)B_{\zeta}(k_1,k_2,k_3)$

 $B_{z}(k_{1},k_{2},k_{3}) = f_{NL}^{*} F(triangle shape)$

 $f_{NI} = 0 \rightarrow Gaussian$

Statistics of the primordial perturbations

Standard inflation ~ Gaussian

More complex models ~ non Gaussian

 $<\zeta(k)\zeta(k')>=\delta(k+k')P_{\zeta}(k)$

Local type PNG: maximal value on squeezed triangles $(k_1 \sim k_2 \gg k_3)$

PNG from CMB

$$B_{obs} \sim B_{prim}$$

Planck collaboration 2018:

$f_{\rm NL}^{\rm local} =$	-0.9 ± 5.1
----------------------------	--------------

Signal regime: Large scales

LSS and PNG

Signal regime: From large to small scales

Problems:

- Shot noise regime kills the rich intermediate scale signal in low density surveys.
- Modelling these scales is tricky....linear model it is then....

LSS and PNG

Signal regime: Large scales

Problem: Systematic-prone region and cosmic variance (MT can solve this)!

Current constraints from LSS surveys

BOSS CMASS+LOWZ (0.1<z<0.8):

Achucarro et al 2022

HI IM and PNG

The 21cm bimodal bispectrum

 $egin{aligned} &\langle \delta^{\mathrm{IF}}(m{k}_1) \, \delta^{\mathrm{IF}}(m{k}_2) \, \delta^{\mathrm{SD}}(m{k}_3)
angle = \ & (2 \, \pi)^3 \, \delta_{\mathrm{D}}(m{k}_{123}) \, B^{\mathrm{SD} imes \mathrm{IF}}(m{k}_1, m{k}_2, m{k}_3) \end{aligned}$

Fisher matrix bispectrum forecasts:

- SKA and HIRAX
- ✤ area=15,000 deg² 0.8<z<2.5</p>
- Stay up to linear scales
- Use only a subset of triangles (the squeezed triangles).
- Analytic bispectrum covariance.
- Avoid contaminated regions.

The effect of foregrounds

k_s

The effect of foregrounds

The effect of the SD survey

Is this limited only to squeezed configurations?

Main points

- This method offers a new way to exploit to the fullest the PNG information within the the HI IM dataset.
- > Non correlated noise and reduced window convolution complexity.
- > Competitive constraints on local PNG from HI IM, while avoiding contaminated regions.
- > Could achieve $\sigma(f_{NI}) < 1$ and improve significantly over current Stage 4 surveys.
- Significant improvement from SD-IF synergy compared to SD and IF.