Fast Simulation of Post-Reionization Cosmological Neutral Hydrogen based on the Halo Model

Pascal Hitz ETHZ Cosmology Group[†]

SKA Cosmology SWG Meeting Nice 05.11.2024

[†] Alexandre Refregier, Pascale Berner, Devin Crichton, John Hennig

Overview

- Fast and large volume simulations of neutral hydrogen (HI) distribution
- Test instrument simulation and analysis pipeline to measure the HI emission

PINOCCHIO: Dark Matter Halo Simulation

- Monaco et al. (2002, 2013), Taffoni et al. (2002), Munari et al. (2017)
- Lagrangian Perturbation Theory
- Collapsed points grouped into halos, hierarchical growth
- Catalog of dark matter halos
- Much faster than N-body

Current Setting of DM Simulations

- 1 Gpc/h box size
- 6700³ simulation particles
- \geq 10 particles per halo $\leftrightarrow \geq$ 4.3 × 10⁹ M_{\odot}
- Lightcone settings:
 - − Frequency range: $700 800 \text{ MHz} \leftrightarrow \text{Redshift } 0.78 1.03$
 - Declinations between -15° and -35°
- Ran on Piz Daint with MPI parallelization
 - 2400 nodes with 12 cores each
 - 150 TB RAM, 40'000 CPU h runtime

 \rightarrow 1.5 – 3% HI mass missing

Halo Model for Cosmological HI

HI Mass Loss

- More massive halos contain more HI
- But: Many more small halos than large ones
- → Important not to neglect small halos
- 1.5 3% loss over considered redshift range

Brightness Temperature Maps

HI Angular Power Spectrum

HI Angular Power Spectrum

HI Power Spectrum

ETH zürich

HI Angular Power Spectrum

Instrument Simulation and Analysis Pipeline

Summary

- Simulation pipeline of HI maps for intensity mapping
- Theoretical predictions of power spectrum
- Apply it to HIRAX, SKAO, MeerKAT, ...
- Future developments:
 - Vary cosmology and astrophysics (HI-Halo mass relation)
 - Consider foregrounds, noise and RSD
 - Cross-correlations with other probes

Hitz et al. (2024) https://arxiv.org/abs/2410.01694

PyCosmo HI Halo Model

• Fundamental assumption: All matter in the universe is arranged in halos of different sizes and masses

$$P_{\rm HI}(k) = P_{\rm 1h,HI}(k) + P_{\rm 2h,HI}(k)$$

$$\rightarrow P_{\rm 1h,HI} = \frac{1}{\bar{\rho}_{\rm HI}^2} \int dM \frac{dn(M,z)}{dM} M_{\rm HI}^2(M) |u_{\rm HI}(k|M)|^2$$

$$\rightarrow P_{\rm 2h,HI} = P_{\rm lin}(k) \left[\frac{1}{\bar{\rho}_{\rm HI}} \int dM \frac{dn(M,z)}{dM} M_{\rm HI}(M) b(M) |u_{\rm HI}(k|M)| \right]$$

Recovered HI Angular Power Spectrum

