Cosmology with single-dish intensity mapping

Isabella Paola Carucci (INAF - Trieste)

5th November 2024 — SKA Cosmology SWG Meeting — Nice, France (remote for me =)

Funded by the European Union **NextGenerationEU**

neutral hydrogen through its 21cm line

- strongly forbidden: $t_{1/2} \sim 10^7$ years ...
- ... but VERY abundant all galaxies have some (even *clouds?*)
- Spectrally isolated no confusion/ interlopers!
- All the way up to EoR (and beyond?)

Wavelength

Record z = 0.376 detection of 21cm emitting galaxy with 178 hours from VLA [Fernández et al, 2016]

5th November 2024

intensity mapping

Put signal-to-noise where you really need it: linear large scale modes

5th November 2024

intensity mapping

Big volumes (for cheap) and high redshift resolution

A large-scale structure scientist's wish list:

5th November 2024

HI Intensity mapping

Isabella P. Carucci (INAF)

Publications of the Astronomical Society of Australia (2020), 37, e007, 31 pages doi:10.1017/pasa.2019.51

Research Paper

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts

Stefano Camera^{2,4,5,6}, Pedro G. Ferreira⁷, Ian Harrison^{2,7}, David Parkinson⁸, Alkistis Pourtsidou³, Mário G. Santos ^{9,10,11}, Laura Wolz ¹², Filipe Abdalla ^{13,14}, Yashar Akrami ^{15,16}, David Alonso ⁷, Sambatra Andrianomena^{9,10,17}, Mario Ballardini^{9,18}, José Luis Bernal^{19,20}, Daniele Bertacca^{21,22}, Stuart Harper², Matt J. Jarvis^{7,9}, Roy Maartens^{1,9}, Natasha Maddox²⁸, Hamsa Padmanabhan²⁹, Jonathan R. Pritchard²⁵, Alvise Raccanelli¹⁹, Marzia Rivi^{13,18}, Sambit Roychowdhury², Martin Sahlén³⁰, Dominik J. Schwarz³¹, Thilo M. Siewert³¹, Matteo Viel³², Francisco Villaescusa-Navarro³³, Yidong Xu²⁶, Daisuke Yamauchi³⁴ and Joe Zuntz³⁵

CAMBRIDGE

Square Kilometre Array Cosmology Science Working Group: David J. Bacon¹, Richard A. Battye², Philip Bull³, Carlos A. P. Bengaly⁹, Anna Bonaldi²³, Camille Bonvin²⁴, Michael L. Brown², Emma Chapman²⁵, Song Chen⁹, Xuelei Chen²⁶, Steven Cunnington¹, Tamara M. Davis²⁷, Clive Dickinson², José Fonseca^{9,22}, Keith Grainge²,

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2020: Technical specifications and performance forecasts

Deep Survey 100 deg² at 200-350 MHz for HI intensity maps for 3<z<6

• Weak Lensing shape measurements with ~50 million objects

Forecasts assume AA4 !

1. Very large areas

- constraints on the power spectrum on ultra-large scales (past the equality peak)
- primordial non-gaussianity (**PNG**)
- general relativistic effects (**GR**)
- inflationary effects
- in general, complementary to e.g., galaxy surveys for multi-tracing technique (to beat cosmic variance)

HI intensity mapping with the SKAO 2. Deep & accurate redshift: Tomographic probe!

constraints on the expansion history and growth of structure (hence, dark energy)

3. Better coverage of the universe epochs

Wide survey

Distribution and cosmic amount of neutral hydrogen (cold gas)

"No photon left behind"

Sensitive to smallest haloes*: dark matter and dark energy models

*that can host some baryon, though

is this even possible?

HI intensity mapping State-of-the-art

Low-frequency cosmology is hard, but we are getting there!

5th November 2024

CHIME collaboration, 2022

stacking LRGs, ELG and QSOs from eBOSS 0.8<z<1.5

stacking LRGs, ELG and QSOs from eBOSS 0.8<z<1.5

HI intensity mapping buried under the contaminants

Q: if we were given SKA-mid IM data today, what could we achieve in terms of contaminants subtraction?

SKAO H1 Intensity Mapping: Blind Foreground Subtraction Challenge

Marta Spinelli,^{1,2,3}* Isabella P. Carucci,^{4,5,6}† Steven Cunnington,⁷ Stuart E. Harper,⁸ Melis O. Irfan,^{3,7} José Fonseca,^{7,3,9,10} Alkistis Pourtsidou,^{7,3} Laura Wolz⁸

Simulating all we could

2 FGs models x 2 Beam Models x 2 Instruments x 2 Deconvolution strategies = 16 data cubes to clean

Results

5th November 2024

Isabella P. Carucci (INAF)

- Red Book is a great starting point for the Science Book, especially for the proposed Chapter 1.
 - Of course forecasts should be updated, revised. (Newer forecasts exist, didn't mention them for brevity).
 - E.g., better xEuclid?
 - And new science cases (and people's expertise) included
- All things with real data: MeerKLASS (wait for Steve's talk), testbed for methods, systematics... and scientific results!
 - It should be properly showcased, in the proposed Chapter 2?