Stress Testing the Cosmological Principle with the SKA

Geraint F. Lewis

Sydney Institute for Astronomy

Testing the Cosmological Principle with Cosmic Dipole

CMB dipole interpreted as v~370 km/s relative to comoving frame.

Imprinted on galaxy/quasar surveys at <0.5% variation across the sky (E&B Test).

Tensions in the Cosmological Principle

Testing the Cosmological Principle with CatWISE Quasars: A Bayesian Analysis of the Number-Count Dipole

Some recent references:

Siewert et al. 2021 Singal 2023a, b; Wagenveld et al. 2023 Abdalla et al. 2022; Kumar Aluri et al. 2023 Secrest et al. 2021 Secrest et al. 2022 (Not complete!!)

 $b^* = 41.78^{+5.02}_{-4.57}$

2 20

b

 $Y_{erl} = 1.03^{+0.05}$

096 .0h .22 .20

Y_{ecl}

 $D/D_{CMR} = 2.68^{+0.23}_{-0.23}$

20 2 28 32

D/D_{CME}

220 225 200 25

3130 G1AS

ÑΑ

 $l^{\circ} = 237.17^{+7.86}$

Monthly Notices of the Royal Astronomical Society, 525, 2023, 4545

Sky Coverage

As "all-sky" as possible? Catalogue match Northern and Southern surveys and cross-calibrate to construct a single catalogue.

We've been exploring the sensitivity of Bayesian-based modeling to limited sky-coverage, finding that this is sensitive to the properties of the sky patch, including area and direction. Building a framework to calibrate information gained.

Oayda, Mittal & Lewis (2024; *Submitted*)

 $\mathcal{D} = 0.0079^{+0.0053}_{-0.0020}$

0.000 0.012 0.018 0.024

01

 p_{\circ}

 $l^{\circ} = 262^{+70}$

Sky Coverage: Combining Surveys

A Bayesian approach to the cosmic dipole in radio galaxy surveys: Joint analysis of NVSS & RACS

Oliver T. Oayda,¹* Vasudev Mittal^{1,2}, Geraint F. Lewis¹, and Tara Murphy¹ ¹Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia ²Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India

 $\ln \mathcal{L} = \ln \mathcal{L}_{
m NVSS} + \ln \mathcal{L}_{
m RACS}$

Monthly Notices of the Royal Astronomical Society, 531, 2024, 231

Selection Functions & Contamination

The Cosmic Dipole in the Quaia Sample of Quasars: A Bayesian Analysis

Vasudev Mittal,^{1,2**} Oliver T. Oayda,^{2*†} and Geraint F. Lewis²

*Joint first author

¹Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India ²Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia

Selection Functions, Classification & Contamination

Abghari et al (arXiv:2405.09762)

One source, or many?

Higher-Order Multipoles

Local Structure

It will be crucial to understand the impact of local structure.

~1% of sources in NVSS and RACS can be cross-matched with z=0.02 sources.

These sources possess a strong dipole signature (D~0.25) and bias the cosmic dipole measurement.

A Bayesian approach to the cosmic dipole in radio galaxy surveys: Joint analysis of NVSS & RACS

Oliver T. Oayda, ^{1*} Vasudev Mittal^{1,2}, Geraint F. Lewis¹, and Tara Murphy¹ ¹Sydney Initiate for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia ²Department of Physical Sciences, IJSER Mohal, Kanodelege (iv., Science SI, SAS Nagar, Manauli PO 140306, Punjab, India

Monthly Notices of the Royal Astronomical Society, 531, 2024, 231

Combining Surveys: Suspicion & Consistency

Tension quantification

Do different datasets make consistent predictions from the same model? *e.g. CMB* vs *Type IA supernovae data*

$$\mathcal{R} = \frac{\mathcal{Z}_{AB}}{\mathcal{Z}_{A}\mathcal{Z}_{B}}$$

How much information does each dataset bring? Are results consistent, or are they suspicious? Need to go beyond standard approaches. (Land-Strykowski et al. in prep)

Prospects for Future Surveys

EMU (ASKAP's Evolutionary Map of the Universe)

- ~70 million galaxies for declinations less than 30 degrees.
- EMU pilot survey covered 220,000 sources in a keyhole 270 degrees squared area.
- The pilot survey has an insufficient count, but the full will allow robust detection of the cosmic dipole.

EWS (Euclid Wide Survey)

- 14,500 degrees squared, identifying ~ 40 million AGN in at least one photometric band.
- Selection of pure AGN catalog ~5 million AGN
- Sufficient source count for a dipole measure.

LSST

- ~ 10 million quasars will be surveyed over the southern sky by the Legacy Survey of Space and Time.
- This is will be more than sufficient for detection of the cosmic dipole.

SKA

- Phase 1 will cover 5000 square degrees, with ~ 5 million galaxies up to z ~ 0.5.
- Phase 2 will contain 900 million galaxies over 30,000 square degrees.
- While Phase 1 will be insufficient, Phase 2 will be more than sufficient.

Conclusions

- The Cosmic Dipole Tension appears to be a real tension
- As a small signal, it's a numbers game
- Future surveys will deliver these numbers but:
 - Accurate selection functions are essential
 - Surveys of varying depth can be combined
 - Need to understand the impact of local structure
 - Tension analysis needed to ensure a consistent picture is emerging
- Need anisotropic cosmological simulations as a benchmark