

Continuum cosmology studies from LOFAR: Results and lessons learned for the SKAO

Catherine Hale University of Oxford

On behalf of members in the LOFAR Surveys Cosmology Team

Overview

- Summary of LOFAR Surveys:
 - Wide Area: LOFAR Two-metre Sky Survey (LoTSS)
 - Deep Fields: LoTSS-Deep
- Summary of Cosmology Studies with LOFAR
- **Challenges** identified from LOFAR Cosmology studies + requirements for cosmology with the **SKAO**:
 - Field variations
 - Counterpart requirements
 - Shape Information

The Low Frequency Array (LOFAR)

Large Area Surveys

see Shimwell + 2017, 2019, 2022

8 hour pointings across the northern hemisphere

rms ~80-100 uJy/beam at 144 MHz

Deep Field Surveys

see Tasse+ 2021, Sabater+ 2021, Bondi+ 2024, Shimwell+ in prep

70+ hour observations across four fields

rms ~30-60 uJy/beam at 144 MHz

Credit: Sabater+2021

Large Area Surveys

see Shimwell + 2017, 2019, 2022

8 hour pointings across the northern hemisphere

rms ~80-100 uJy/beam at 144 MHz

Current data release is **data release 2** (DR2) from Shimwell+ 2022 covering ~ **5600 sq deg** across **two large contiguous fields**.

Contains ~4 million sources across the sky

Coverage varies across the sky with sensitivity variations due to combination of: elevation effects, bright sources, data reduction effects

Will eventually cover majority of the northern sky – majority of observations now taken and processed.

Field	Obs. Time (hr)	$ \begin{vmatrix} Area^{full} \\ (deg^2) \end{vmatrix} $	$\rm N_S^{raw}$	$\sigma_{ m med}^{ m full} \ (\mu { m Jy \ beam}^{-1})$
LH Boo EN1	$ \begin{array}{r} 112 \\ 80 \\ 164 \end{array} $	25.0 26.5 24.3	$50112 \\ 36767 \\ 69954$	42 60 33
NEP	72	~20	~23000	Mandal+ 2021 30-40 Bondi+ 2024

+ Cross-matching to host galaxies through likelihood ratios and Galaxy Zoo (Kondapally+ 2021)

+ Redshifts from photometric template fitting and machine learning (Duncan+ 2021)

+ Source Classification into source types (Best+ 2023)

Deep Field Surveys

see Tasse+ 2021, Sabater+ 2021, Bondi+ 2024, Shimwell+ in prep

70+ hour observations across four fields

rms ~30-60 uJy/beam at 144 MHz

Credit: Sabater+2021

Field	Obs. Time (hr)	$ \begin{vmatrix} Area^{full} \\ (deg^2) \end{vmatrix} $	$\rm N_S^{raw}$	$\sigma_{ m med}^{ m full} \ (\mu { m Jy \ beam}^{-1})$
LH Boo EN1	$ \begin{array}{r} 112 \\ 80 \\ 164 \end{array} $	25.0 26.5 24.3	$50112 \\ 36767 \\ 69954$	42 60 33
NEP	72	~20	~23000	Mandal+ 2021 30-40 Bondi+ 2024

+ Cross-matching to host galaxies through likelihood ratios and Galaxy Zoo (Kondapally+ 2021)

+ Redshifts from photometric template fitting and machine learning (Duncan+ 2021)

+ Source Classification into source types (Best+ 2023)

Deep Field Surveys

see Tasse+ 2021, Sabater+ 2021, Bondi+ 2024, Shimwell+ in prep

70+ hour observations across four fields

rms ~30-60 uJy/beam at 144 MHz

Credit: Sabater+2021

+ Plans to go deeper - 500h observations coming soon!

One-Point statistics to consider the process to generate sources 5 > 2 mJy, mask d, N = 827 362 LoTSS-DB2 Randoms Poisson compound Poisson negative binomial 40

Challenges with LOFAR + lessons for SKAO

Completeness Effects

Multi-Wavelength Counterparts

Multi-Wavelength Counterparts

For LoTSS-Wide, cross-matched catalogue from Hardcastle+ 2023 provides **hosts** and **redshifts** for **~50-60%** of sources.

Cannot split into **source populations** needed for **multi-tracer** techniques or into **redshift** ranges

Also need to account for the uncertainties associated with classifications and redshift modelling to accurately trace source populations

Source Shape Information

LoTSS High Res observes at resolutions the SKAO could reach.

Summary

- LOFAR has provided **excellent radio surveys** to test cosmology with radio surveys from both **small** and **wide areas**
- Allows good indications of challenges we can expect for SKAO (especially Low)
- LOFAR Surveys cosmology team have done a **number** of **cosmological studies** to probe e.g. bias evolution, cosmological parameters, the cosmic dipole
- However, LOFAR surveys have also identified a number of challenges which we need to know how to overcome for the SKAO to be able to use such surveys to their maximal capacity