
Contribution to the pyCID GUI: a semi-automatic CME detection tool

Gianluca Napoletano, Università di Firenze

What is pyCID?
pyCID is a quick-look GUI tool for visualization and validation of Metis data of different types (images, light
curves) and levels (L0, L1 and L2). It was inspired by the more sophisticated IDL tool iCID, it is written in Python
and was presented during the previous METIS meeting by A. Burtovoi

What is pyCID?
It makes use of the SunPy affiliated package “sunkit-image” to implement additional tools like coordinate
transformation and filters for image enhancement and processing

Running differences

• Running differences enhance moving features in the FOV such as Coronal Mass Ejections

L2_metis-vl-tb_20231214T193001

L2_metis-vl-tb_20231215T002957

zero-mean running difference

Running differences

• Running differences enhance moving features in the FOV such as Coronal Mass Ejections

L2_metis-vl-tb_20231214T193001

L2_metis-vl-tb_20231215T002957

zero-mean running difference
?

?

?

Goal: provide an additional function to the
pyCYD GUI to assist the CME hunters in
assessing additional information, such as CME
width, position angle, main direction and
height;

• The main idea is adapted from the CACTUS fully automatic CME detection algorithm employed to image
sequences from LASCO (see Robbrecht et al. 2004, Olmedo et al. 2007, Robbrecht et al. 2009).

• We opted for a semi-automatic algorithm where two parameters are manually adjusted;

Algorithm steps

1. Conversion to polar coordinates

• The main idea is adapted from the CACTUS fully automatic CME detection algorithm employed to image
sequences from LASCO (see Robbrecht et al. 2004, Olmedo et al. 2007, Robbrecht et al. 2009).

• We opted for a semi-automatic algorithm where two parameters are manually adjusted;

Algorithm steps

1. Conversion to polar coordinates

θ

Algorithm steps

2. Compute angular intensity: for each angle (image column) positive pixels are added to construct an angular
intensity map

Algorithm steps

3. Define the threshold and look for intervals where is above T1.
This defines the first angular window detection where the CME is located (core region):

Algorithm steps

3. Define the threshold and look for intervals where is above T1.
This defines the first angular window detection where the CME is located (core region):

N1 is the first user controlled parameter, defining where the brightest feature of the image will be.
A lower threshold will result in a wider core region.

4. Increase the core region by setting a new threshold where is a reduced
distribution which omits values of within the core region.

Algorithm steps

T1

T2

Algorithm steps

4. Increase the core region by setting a new threshold where is a reduced
distribution which omits values of within the core region.

The core angle region is
widened up to the angular
positions where intensity falls
below the new threshold T2.

N2 is the second user controlled parameter, with the effect of widening the core region to establish the final CME
angular window.

Algorithm steps

4. Increase the core region by setting a new threshold where is a reduced
distribution which omits values of within the core region.

The core angle region is
widened up to the angular
positions where intensity falls
below the new threshold T2.

T1

T2

Algorithm steps

Core region center

5. CME leading edge detection: within the CME core region only, fix radial heght and sum the intensity values
at all angles to define the intensity distribution

Algorithm steps

Algorithm steps

6. We then perform an exponential fit and set the CME height as 2 times the exponential scale length

Algorithm steps

6. We then perform an exponential fit and set the CME height as 2 times the exponential scale length

To do & ongoing developement

• Regularly employ the CMEdetector to report bugs and improve it

• Adapt the algorithm behaviour to peculiar cases

• Improve the choice of the parameters (eventually make it fully automatic)

Possible applications

• CME kinematics, initial conditions for forecasting models

• CME deprojection from multiple Points of View

CME detection in coronagraph FOV

Features like CME height and width at each time are essential for:
- Studying erupting CME evolution in time
- Providing initial conditions to forecasting models
- Assess CME kinematics and morphology

The easiest deprojection model

- We only take into account the farmost visible element of the detected CME
- We assume it is the same pont (discuss error with angular separation between observers)

Algorithm steps

6. In the case of a maximum or bell-shape intensity distribution, take points at half maximum and define a
leading and trailing edge

CME angular width
CME propagation direction (weighted average)

	Slide 1
	Slide 2: What is pyCID?
	Slide 3: What is pyCID?
	Slide 4: Running differences
	Slide 5: Running differences
	Slide 6
	Slide 7
	Slide 8: Algorithm steps
	Slide 9: Algorithm steps
	Slide 10: Algorithm steps
	Slide 15: Algorithm steps
	Slide 16: Algorithm steps
	Slide 17: Algorithm steps
	Slide 18: Algorithm steps
	Slide 19: Algorithm steps
	Slide 20: Algorithm steps
	Slide 21: Algorithm steps
	Slide 23
	Slide 24
	Slide 25
	Slide 26: To do & ongoing developement
	Slide 27: Possible applications
	Slide 28
	Slide 29: CME detection in coronagraph FOV
	Slide 30: The easiest deprojection model
	Slide 31: Algorithm steps
	Slide 32

