INAF Ć HaMMon Hazard Mapping and vulnerability Monitoring

Introducing HaMMon

Funded by PNRR

Backed by ICSC's spoke 3

Industrial Project

Capitalizing the acquired skills applying them to real world's issues

15 partners

Public bodies and private companies across Italy

Goals

Facing the hazardous and

extreme events **more frequent**

due to the **Climate Change**

Work Packages

0

Management

Technological infrastructure to run and deploy the applications

Post-event analysis

Seasonal forecasts and weather generator

Building features extraction from images

Vulnerability curves for earthquakes and landslides

Work Packages involving INAF

0

Management

Technological infrastructure to run and deploy the applications

Post-event analysis

Seasonal forecasts and weather generator

Building features extraction from images

Vulnerability curves for earthquakes and landslides

Which are the goals?

WP2

Carry on assessment activities on the Digital Twin

WP4

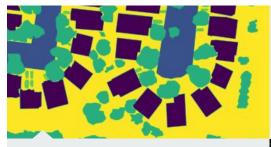
Getting better estimates on the danger to which building are exposed

Which are the tasks?

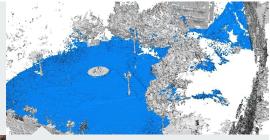
WP2

- Flying drones to take pictures
- Segmenting the pictures automatically
- Doing photogrammetry
- Finalizing the Digital Twin

WP4


- Modelling the vulnerability curves
- Collecting aerial images
- Doing feature extraction



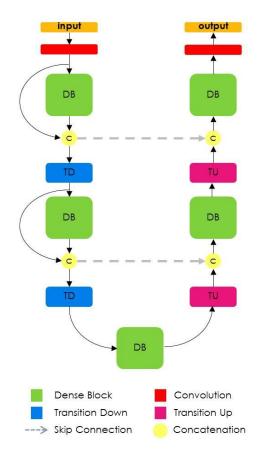

Why Segmenting?

Estimating areas

Estimating volumes (with photogrammetry)

How to segment?

Tiramisù


Fully Convolutional Densely Connected U-Net

How to segment?

Tiramisù

Fully Convolutional Densely Connected U-Net

- The Dense Blocks accumulate different feature maps for the input
- The Transition Down decrease size and increase feature space
- The Transition Up decrease feature space and increase size
- The Skip Connections force conditioning on the output

Experimental setup

FloodNet dataset

- Images from a drone survey made in 2017
- Presents damages left from Harvey hurricane
- Taken in Texas and Louisiana (USA)

2.343

Labelled images

10

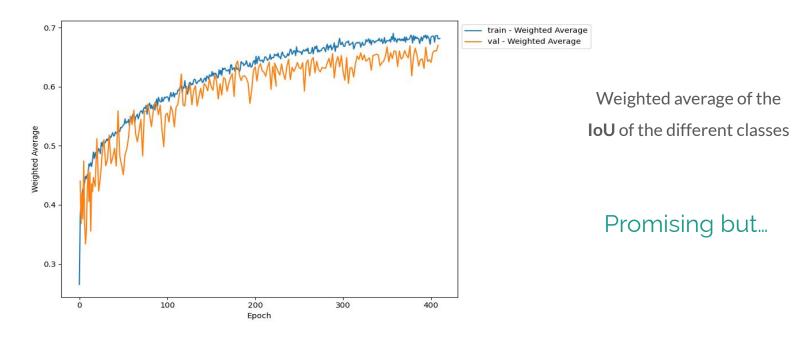
Class of objects

Background, Building-flooded, Building-not-flooded, Road-flooded, Road-not-flooded, Water, Tree, Vehicle Pool, Grass **13GB**

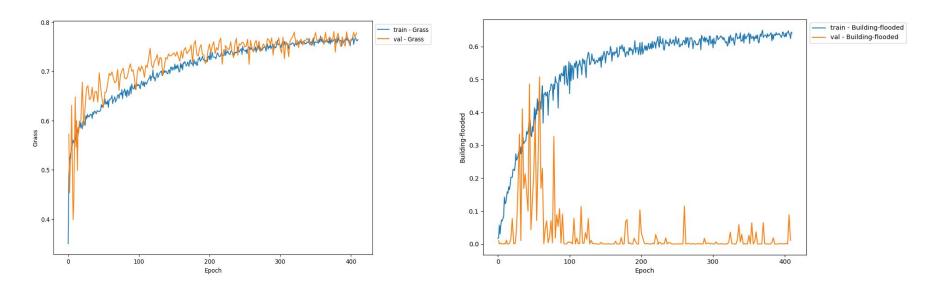
of Hi-Res images

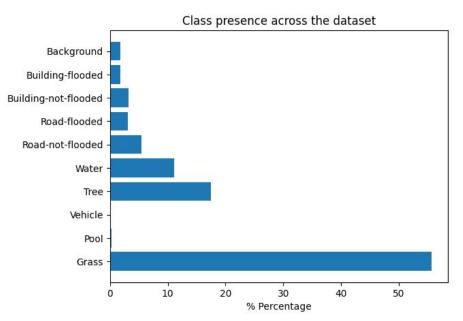
Training architecture

- The architecture is a Kubernetes cluster provided by the WP1
- The training runs on two nVidia Tesla V100 32GB
- The network storage is modular and shared



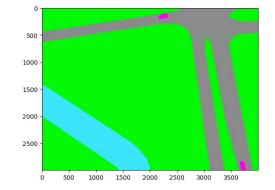
Training setup

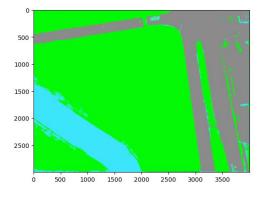

- Random crops of the dataset images at 600x600 px
- Data augmentation (flipping, scaling)
- ~ 400 epochs
- Average training time of around 100 hours


Results so far

Results so far

Results so far




Some classes are practically missing!

Results so far

Image

Ground Truth

Prediction

What we are improving

Transfer-learning

on RescueNet dataset

- Images from a UAV made in 2018
- Presents damages left from Michael hurricane
- Taken in different USA locations

4.494

Labelled images

Class of objects

Background, Water, Building_No_Damage Building_Minor_Damage Building_Major_Damage Building_Total_Destruction Vehicle, Road-Clear, Road-Blocked, Tree, Pool 22.6GB

of Hi-Res images

Hi-Res inference

CPU/GPU

Heterogeneous computing

12MP

3000x4000 px

per image

Implementing Attention

SegFormer

Transformer encoder + MPL decoder

https://arxiv.org/abs/2105.15203

Attention U-Net

U-Net with attention decoding

https://arxiv.org/abs/1804.03999

TransUNet

U-Net with attention encoding

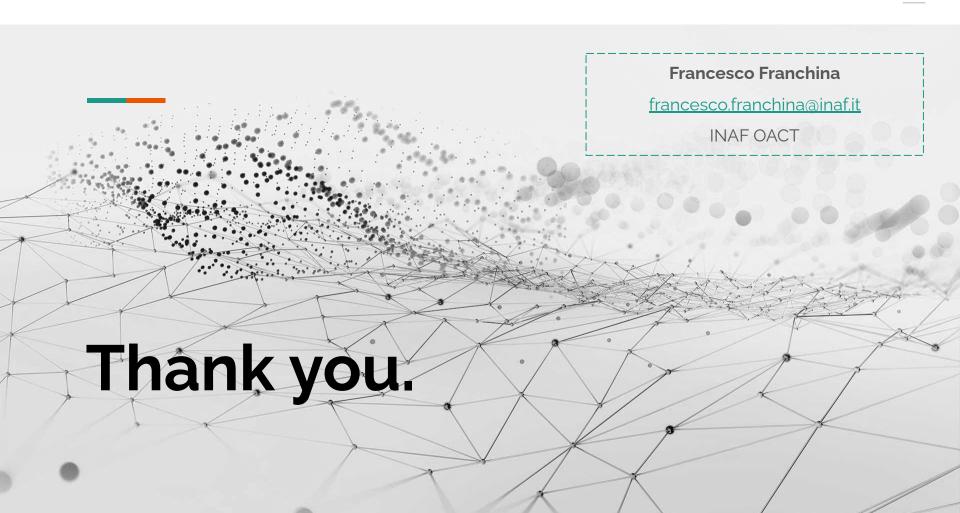
https://arxiv.org/abs/2102.04306

Digital Twin augmentation

↑ Tiramisù

Eva Sciacca (Tec) eva.sciacca@inaf.it

Mauro Imbrosciano (AdR) mauro.imbrosciano@inaf.it


Francesco Franchina (Tec TD) <u>francesco.franchina@inaf.it</u>

Fabio Vitello (Tec) fabio.vitello@inaf.it

Leonardo Pelonero (Tec. TD) leonardo.pelonero@inaf.it

