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DES Supernova
• 5 years with 10 fields 

(8 Shallow + 2 deep)

• >100 visits

• Tens of thousands of 
transients

• Spectroscopic follow 
up of hundreds. 
Thousands with only 
photometry + hostz

Supernova survey 
- 5 years 

- 10 Deep drilling fi

- 𝑚

LSST 
- 10 years

- WFD  + 5 Deep drilling fields

- 𝑚r ≈ 24.7 mag
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Supernova survey 

>2.000 high-quality SN Ia

LSST 

>1 million SN Ia
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Supernova survey 

>2.000 high-quality SN Ia

LSST 

>1 million SN Ia


billions of detected objects 30.000 SN candidates

425 spectroscopically SN Ia
Smith, D’Andrea, Sullivan, AM et al. 2018

30.000 live transients (TiDES)
Frohmaier et al. 2025 (previous talk!)
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Supernova survey 

>2.000 high-quality SN Ia

LSST 

>1 million SN Ia


billions of detected objects 30.000 SN candidates

425 spectroscopically SN Ia
Smith, D’Andrea, Sullivan, AM et al. 2018

30.000 live transients (TiDES)
Frohmaier et al. 2025 (previous talk!)

How can we maximise SN Ia science?



A. Möller | An Extraordinary Journey into the Transient Sky 6

Photometric classification
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Deep Learning photometric 
classification


Recurrent and Bayesian Neural 
Networks


Trained with large simulations

Normal Ia, Peculiar Ia and CC SNe


Möller+ 2020, 2022b

SuperNNova

Photometric classification



Light-curves 

+


Host-galaxy redshifts 

+ 


SuperNNova

DES 5-year SNIa

Accuracy >98%

Vincenzi, Sullivan, Möller et al. 2022
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Light-curves 

+


Host-galaxy redshifts 

+ 


SuperNNova

1484 SNe Ia

DES 5-year SNIa
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Photometric SNe Ia

Spectroscopic SNe Ia

Möller+ 2022a


DES 5-year SNIa
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DES-SN5YR
(best-fit Flat⇤CDM)

DES-SN5YR
(best-fit Flatw0waCDM)

Planck 2020
(best-fit Flat⇤CDM)

Figure 4. Hubble diagram of DES-SN5YR. We show both the single SN events and the redshift-binned SN distance moduli.
Redshift bins are adjusted so that each bin has the same number of SNe (⇠ 50). The 1635 new DES supernovae are in blue,
and in the upper panel they are shaded by their probability of being a Type Ia; most outliers are likely contaminants (pale
blue). The inset shows the number of SNe as a function of redshift (same z-range as the main plot). The lower panel shows
the di↵erence between the data and the best fit Flat-wCDM model from DES-SN5YR alone (third result in Table 2), and
overplots three other best fit cosmological models — Flat-⇤CDM model from DES-SN5YR alone (magenta line, first result in
Table 2), Flat-w0waCDM model from DES-SN5YR alone (green line, fourth result in Table 2), and Planck 2020 Flat-⇤CDM
model without SN data (dashed line, ⌦Planck

M =0.317 ± 0.008).

tions” (BBC) framework (Kessler & Scolnic 2017). In
particular, bias corrections �µbias,i are estimated from
a large simulation of our sample. The simulation mod-
els the rest-frame SN Ia spectral energy distribution
(SED) at all phases, SN correlations with host-galaxy
properties, SED reddening through an expanding uni-
verse, broadband griz fluxes, and instrumental noise
(see Fig. 1 in Kessler et al. 2019a). Using Eq. 1 there re-
mains intrinsic scatter of ⇠ 0.1 mag in Hubble residuals.
Following the numerous recent studies on understanding
and modelling SN Ia dust extinction and progenitors
(Wiseman et al. 2021, 2022; Duarte et al. 2022; Dixon
et al. 2022; Chen et al. 2022; Meldorf et al. 2023), we
model this residual scatter using the dust-based model
from Brout & Scolnic (2021); Popovic et al. (2023a),
which improves on the previous commonly used models
in Kessler et al. (2013) that are based on SALT2 error
models in Guy et al. (2010); Chotard et al. (2011). This
intrinsic scatter remains the largest source of systematic
uncertainty from the simulation.

As we do not spectroscopically classify the SNe and
thus expect contamination from core-collapse (CC) su-
pernovae, we perform machine learning light-curve clas-
sification on the sample following Vincenzi et al. (2023);
Möller et al. (2022). We implement two advanced ma-
chine learning classifiers, SuperNNova (Möller & de
Boissière 2020) and SCONE (Qu et al. 2021) and use
state-of-the-art simulations to model contamination (es-
timated to be ⇠ 6.5%, see Table 10 and Sect. 7.1.5 of
Vincenzi et al. 2024). Classifiers are trained using core-
collapse and peculiar SN Ia simulations based on Vin-
cenzi et al. (2021) and using state-of-the-art SED tem-
plates by Vincenzi et al. (2019); Kessler et al. (2019b).
These DES simulations are the first to robustly repro-
duce the contamination observed in the Hubble residuals
(Vincenzi et al. 2021; Vincenzi et al. 2024, Table 10).

For each SN, the trained classifiers assign a probability
of being a Type Ia, and these probabilities are included
within the BEAMS framework to marginalize over core-
collapse contamination and produce the final Hubble Di-
agram (Kunz et al. 2012; Hlozek et al. 2012). The final

DES Collaboration 2024Photometric SNe Ia

Spectroscopic SNe Ia

Largest high-z SN Ia sample from a 
single survey for cosmology

Möller+ 2022a


DES 5-year SNIa
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Towards a complete SNIa sample

Light-curves 

+


Host-galaxy redshifts 
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SuperNNova

Accuracy >97%



Towards a complete SNIa sample

2298 SNe Ia

(Expected well sampled ~2360)

10 Möller et al.

Figure 8. Distributions of redshift, SALT2 G1, SALT2 2, i-band peak magnitude 8peak and host-galaxy r-band magnitude for the HQ sample classified without
host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 and the spectroscopically classified SNe
Ia.

Figure 9. SALT2 stretch and colour, host-galaxy mass and A magnitude as a
function of the redshift for the HQ sample classified without host information
(green), the photometrically selected SN Ia sample with spectroscopic host-
galaxy redshifts (in M22 in orange) and the spectroscopically classified SNe Ia
(in blue). For the sample classified without host information (green) we show
two versions: one using SNphoto-z (solid line) computed simultaneously with
colour and stretch; and the other using the host-galaxy spectroscopic redshift
when available (dotted line). The error bars show the dispersion for a given
redshift bin. The HQ sample probes SNe Ia in fainter hosts than the M22
sample at all redshifts as well as lower mass hosts from z>0.4.

Figure 10. SNIa stretch as a function of host-galaxy mass. In coloured lines we
show the median values for the HQ sample classified without host information
(green), the photometrically selected SN Ia sample with spectroscopic host-
galaxy redshifts (in M22 in orange) and the spectroscopically classified SNe
Ia (in blue). The error bars show the dispersion for a given redshift bin. In grey
we show each of the measurements for a given SNe Ia in the z-free sample.
Each row uses a di�erent redshift for the DES SNe Ia HQ sample and thus its
x1 measurement, first row SNphoto-z, second row host-galaxy spectroscopic
redshifts if available and third row a mixture of host-galaxy spectroscopic
redshift and when not available SNphoto-z. The z-free sample shows for any
choice of redshift, a higher stretch at higher mass than the M22 sample.

MNRAS 000, 1–16 (2020)

Spec Ia

Photo Ia host specz 
(DES cosmology)

Photo class SNphoto z 
(almost complete sample!)
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Host-galaxy redshifts 
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Accuracy >97%
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Figure 8. Distributions of redshift, SALT2 G1, SALT2 2, i-band peak magnitude 8peak and host galaxy r-band magnitude for the HQ sample classified without
host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 and the spectroscopically classified SNe
Ia.

Figure 9. SNIa samples properties as a function of redshift. SALT2 param-
eters stretch and colour, host-galaxy mass and A magnitude as a function of
the redshift for the HQ sample classified without host information (green),
the photometrically selected SN Ia sample with spectroscopic host-galaxy
redshifts (in M22 in orange) and the spectroscopically classified SNe Ia (in
blue). For the sample classified without host information (green) we show two
parameters derivation, using the SNphotoz (solid line) and the host-galaxy
spectroscopic redshift when available (dotted line). The error bars show the
magnitude dispersion for a given redshift bin. The HQ sample probes SNe
Ia in fainter hosts than the M22 sample at all redshifts as well as lower mass
hosts from z>0.4.

Figure 10. SNIa samples stretch as a function of host-galaxy mass. In coloured
lines we show the median values for the HQ sample classified without host
information (green), the photometrically selected SN Ia sample with spec-
troscopic host-galaxy redshifts (in M22 in orange) and the spectroscopically
classified SNe Ia (in blue). The error bars show the magnitude dispersion for
a given redshift bin. In grey we show each of the measurements for a given
SNe Ia in the z-free sample. Each row uses a di�erent redshift for the DES
SNe Ia HQ sample and thus its x1 measurement, first row SNphoto-z, second
row host-galaxy spectroscopic redshifts if available and third row a mixture
of host-galaxy spectroscopic redshift and when not available SNphoto-z. The
z-free sample shows for any choice of redshift, a higher stretch at higher mass
than the M22 sample.

MNRAS 000, 1–14 (2020)
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Figure 8. Distributions of redshift, SALT2 G1, SALT2 2, i-band peak magnitude 8peak and host-galaxy r-band magnitude for the HQ sample classified without
host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 and the spectroscopically classified SNe
Ia.

Figure 9. SALT2 stretch and colour, host-galaxy mass and A magnitude as a
function of the redshift for the HQ sample classified without host information
(green), the photometrically selected SN Ia sample with spectroscopic host-
galaxy redshifts (in M22 in orange) and the spectroscopically classified SNe Ia
(in blue). For the sample classified without host information (green) we show
two versions: one using SNphoto-z (solid line) computed simultaneously with
colour and stretch; and the other using the host-galaxy spectroscopic redshift
when available (dotted line). The error bars show the dispersion for a given
redshift bin. The HQ sample probes SNe Ia in fainter hosts than the M22
sample at all redshifts as well as lower mass hosts from z>0.4.

Figure 10. SNIa stretch as a function of host-galaxy mass. In coloured lines we
show the median values for the HQ sample classified without host information
(green), the photometrically selected SN Ia sample with spectroscopic host-
galaxy redshifts (in M22 in orange) and the spectroscopically classified SNe
Ia (in blue). The error bars show the dispersion for a given redshift bin. In grey
we show each of the measurements for a given SNe Ia in the z-free sample.
Each row uses a di�erent redshift for the DES SNe Ia HQ sample and thus its
x1 measurement, first row SNphoto-z, second row host-galaxy spectroscopic
redshifts if available and third row a mixture of host-galaxy spectroscopic
redshift and when not available SNphoto-z. The z-free sample shows for any
choice of redshift, a higher stretch at higher mass than the M22 sample.

MNRAS 000, 1–16 (2020)

10 Möller et al.

Figure 8. Distributions of redshift, SALT2 G1, SALT2 2, i-band peak magnitude 8peak and host galaxy r-band magnitude for the HQ sample classified without
host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 and the spectroscopically classified SNe
Ia.

Figure 9. SNIa samples properties as a function of redshift. SALT2 param-
eters stretch and colour, host-galaxy mass and A magnitude as a function of
the redshift for the HQ sample classified without host information (green),
the photometrically selected SN Ia sample with spectroscopic host-galaxy
redshifts (in M22 in orange) and the spectroscopically classified SNe Ia (in
blue). For the sample classified without host information (green) we show two
parameters derivation, using the SNphotoz (solid line) and the host-galaxy
spectroscopic redshift when available (dotted line). The error bars show the
magnitude dispersion for a given redshift bin. The HQ sample probes SNe
Ia in fainter hosts than the M22 sample at all redshifts as well as lower mass
hosts from z>0.4.

Figure 10. SNIa samples stretch as a function of host-galaxy mass. In coloured
lines we show the median values for the HQ sample classified without host
information (green), the photometrically selected SN Ia sample with spec-
troscopic host-galaxy redshifts (in M22 in orange) and the spectroscopically
classified SNe Ia (in blue). The error bars show the magnitude dispersion for
a given redshift bin. In grey we show each of the measurements for a given
SNe Ia in the z-free sample. Each row uses a di�erent redshift for the DES
SNe Ia HQ sample and thus its x1 measurement, first row SNphoto-z, second
row host-galaxy spectroscopic redshifts if available and third row a mixture
of host-galaxy spectroscopic redshift and when not available SNphoto-z. The
z-free sample shows for any choice of redshift, a higher stretch at higher mass
than the M22 sample.
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Figure 8. Distributions of redshift, SALT2 G1, SALT2 2, i-band peak magnitude 8peak and host galaxy r-band magnitude for the HQ sample classified without
host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 and the spectroscopically classified SNe
Ia.

Figure 9. SNIa samples properties as a function of redshift. SALT2 param-
eters stretch and colour, host-galaxy mass and A magnitude as a function of
the redshift for the HQ sample classified without host information (green),
the photometrically selected SN Ia sample with spectroscopic host-galaxy
redshifts (in M22 in orange) and the spectroscopically classified SNe Ia (in
blue). For the sample classified without host information (green) we show two
parameters derivation, using the SNphotoz (solid line) and the host-galaxy
spectroscopic redshift when available (dotted line). The error bars show the
magnitude dispersion for a given redshift bin. The HQ sample probes SNe
Ia in fainter hosts than the M22 sample at all redshifts as well as lower mass
hosts from z>0.4.

Figure 10. SNIa samples stretch as a function of host-galaxy mass. In coloured
lines we show the median values for the HQ sample classified without host
information (green), the photometrically selected SN Ia sample with spec-
troscopic host-galaxy redshifts (in M22 in orange) and the spectroscopically
classified SNe Ia (in blue). The error bars show the magnitude dispersion for
a given redshift bin. In grey we show each of the measurements for a given
SNe Ia in the z-free sample. Each row uses a di�erent redshift for the DES
SNe Ia HQ sample and thus its x1 measurement, first row SNphoto-z, second
row host-galaxy spectroscopic redshifts if available and third row a mixture
of host-galaxy spectroscopic redshift and when not available SNphoto-z. The
z-free sample shows for any choice of redshift, a higher stretch at higher mass
than the M22 sample.
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host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 and the spectroscopically classified SNe
Ia.
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eters stretch and colour, host-galaxy mass and A magnitude as a function of
the redshift for the HQ sample classified without host information (green),
the photometrically selected SN Ia sample with spectroscopic host-galaxy
redshifts (in M22 in orange) and the spectroscopically classified SNe Ia (in
blue). For the sample classified without host information (green) we show two
parameters derivation, using the SNphotoz (solid line) and the host-galaxy
spectroscopic redshift when available (dotted line). The error bars show the
magnitude dispersion for a given redshift bin. The HQ sample probes SNe
Ia in fainter hosts than the M22 sample at all redshifts as well as lower mass
hosts from z>0.4.

Figure 10. SNIa samples stretch as a function of host-galaxy mass. In coloured
lines we show the median values for the HQ sample classified without host
information (green), the photometrically selected SN Ia sample with spec-
troscopic host-galaxy redshifts (in M22 in orange) and the spectroscopically
classified SNe Ia (in blue). The error bars show the magnitude dispersion for
a given redshift bin. In grey we show each of the measurements for a given
SNe Ia in the z-free sample. Each row uses a di�erent redshift for the DES
SNe Ia HQ sample and thus its x1 measurement, first row SNphoto-z, second
row host-galaxy spectroscopic redshifts if available and third row a mixture
of host-galaxy spectroscopic redshift and when not available SNphoto-z. The
z-free sample shows for any choice of redshift, a higher stretch at higher mass
than the M22 sample.
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Figure 8. Distributions of redshift, SALT2 G1, SALT2 2, i-band peak magnitude 8peak and host galaxy r-band magnitude for the HQ sample classified without
host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 and the spectroscopically classified SNe
Ia.
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eters stretch and colour, host-galaxy mass and A magnitude as a function of
the redshift for the HQ sample classified without host information (green),
the photometrically selected SN Ia sample with spectroscopic host-galaxy
redshifts (in M22 in orange) and the spectroscopically classified SNe Ia (in
blue). For the sample classified without host information (green) we show two
parameters derivation, using the SNphotoz (solid line) and the host-galaxy
spectroscopic redshift when available (dotted line). The error bars show the
magnitude dispersion for a given redshift bin. The HQ sample probes SNe
Ia in fainter hosts than the M22 sample at all redshifts as well as lower mass
hosts from z>0.4.

Figure 10. SNIa samples stretch as a function of host-galaxy mass. In coloured
lines we show the median values for the HQ sample classified without host
information (green), the photometrically selected SN Ia sample with spec-
troscopic host-galaxy redshifts (in M22 in orange) and the spectroscopically
classified SNe Ia (in blue). The error bars show the magnitude dispersion for
a given redshift bin. In grey we show each of the measurements for a given
SNe Ia in the z-free sample. Each row uses a di�erent redshift for the DES
SNe Ia HQ sample and thus its x1 measurement, first row SNphoto-z, second
row host-galaxy spectroscopic redshifts if available and third row a mixture
of host-galaxy spectroscopic redshift and when not available SNphoto-z. The
z-free sample shows for any choice of redshift, a higher stretch at higher mass
than the M22 sample.
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Early SNe Ia follow-up

4 Möller et al.

Table 1. Type Ia vs. non Ia classification metrics for complete light-curves
with no redshift information. The model was trained and evaluated using two
datasets: balanced and test. The metrics indicate the performance of the ML
classifier. The metrics for the test dataset indicate the expected performance
in a real survey. We show the single model and the ensemble method metrics.
Uncertainties for the single model are computed from the variance of 5 models
with di�erent seeds and uncertainties for the ensemble methods are computed
using three ensembles of fives seeds.

method accuracy e�ciency purity

balanced dataset

single model 97.15 ± 0.03 97.94 ± 0.06 96.42 ± 0.07
ensemble 97.34 ± 0.01 98.17 ± 0.02 96.57 ± 0.01

test dataset (realistic rates)

single model 97.04 ± 0.02 98.12 ± 0.06 97.20 ± 0.05
ensemble 97.22 ± 0.01 98.36 ± 0.01 97.30 ± 0.01

Table 2. Type Ia vs. non Ia classification metrics for partial light-curves
with no redshift information. These light-curves contain only photometric
measurements up to their peak brightness.

method accuracy e�ciency purity

balanced dataset

single model 90.4 ± 0.1 91.5 ± 0.2 89.4 ± 0.2
ensemble 90.73 ± 0.01 91.9 ± 0.1 89.7 ± 0.1

test dataset (realistic rates)

single model 90.6 ± 0.1 92.1 ± 0.2 91.7 ± 0.2
ensemble 90.46 ± 0.03 92.49 ± 0.03 91.93 ± 0.03

of correctly classified SNe Ia while TN is the number of correctly201

classified non SNe Ia.202

The purity of the SN Ia sample and the classification e�ciency
are defined as:

purity =
TP

TP + FP
; e�ciency =

TP
TP + FN

(2)

203

In Table 1 we list the accuracies, purities, and e�ciencies obtained204

for the balanced dataset (same number of Type Ia and core-collapse205

SNe) and the more realistic DES test set. The balanced dataset is206

useful as an evaluation of the machine learning algorithm while the207

test dataset can be used to assess the reliability of the selected sam-208

ple as it is physically more representative. We find high-accuracies,209

purities and e�ciencies for both datasets.210

As in M22, we use ensemble predictions to select our sample. In211

Table 1, we obtain predictions with di�erent S����NN��� models212

trained with di�erent initiation parameters and average them to ob-213

tain an "ensemble probability". Here we use 5 models, also called214

an "ensemble set", trained with di�erent seeds. To report the perfor-215

mance of the methods, we quote the mean and standard deviation of216

a given metric using 3 ensemble sets.217

3.3 Performance for partial light-curves218

We now evaluate the performance of our trained classifier when using219

simulated partial light-curves. When training S����NN���, we crop220

light-curves to random time-ranges in the dataset, this produces a221

classification model robust for both complete and partial light-curve222

classification.223

We evaluate the performance on light-curves that were cropped224

to only contain photometric measurements until peak brightness in225

Table 2. As we use fewer photometric measurements per event, the226

performance is poorer. However this type of classification can be227

used for scheduling spectroscopic follow-up before SNe fade away.228

In the following, we use the single model classifier as the per-229

formance gain for the ensemble classifier is small and current early230

classification mechanisms use a single model. However, the extension231

to ensembles can provide a gain if resources are available to deploy232

multiple models as they are not very computationally expensive.233

4 ESTIMATING REDSHIFTS AND LIGHT-CURVE234

PARAMETERS SIMULTANEOUSLY235

In this work we will select a photometric SN Ia sample from DES236

data without the use of redshift information. After classification,237

we will determine the redshifts and SALT2 light-curve parameters238

simultaneously on light-curves using the SNphoto-z code described239

in Kessler et al. (2010).240

In this Section, using simulations, we examine biases arising from241

this fit and evaluate how these biases a�ect the e�cacy of sample cuts242

in improving the classification e�ciency and limiting contamination.243

We start by assuming that all the photometrically classified SNe244

are SNe Ia and fit them with the SALT2 supernova light-curve model245

based on (Guy et al. 2007) and extended to the optical+NIR (Pierel246

et al. 2018). We use the SNANA light-curve fitting program (Kessler247

et al. 2009) to simultaneously fit for I, C0, G1, 2 and G0; respectively248

redshift, time of maximum brightness, stretch, colour and amplitude249

as described in Kessler et al. (2010). To obtain better estimates of250

redshifts for SNe Ia, a weak distance-modulus prior is applied (Ap-251

pendix B) assuming a ⇤CDM cosmology and we use when available252

inferred photometric redshifts of the host galaxies. When no photo-253

metric redshift is available, we use a flat prior. We highlight that this254

SNphoto-z fit uses a cosmological model.255

Detailed analysis of biases on the light-curve parameters and red-256

shift is presented in Section 4.1 and their e�ect on the cuts to improve257

the classification by limiting contamination in Section 4.2.258

None of the derived redshifts (SNphoto-z) or SALT2 parameters259

are used for photometric classification. They are only used in Sec-260

tion 5.5 to study the sample properties after classification is done261

without this information.262

4.1 SNphoto-z and light-curve parameters biases263

We use the test simulations to evaluate the fitted light-curve param-264

eters and SNphoto-z. In Figure 2 we compare the fitted light-curve265

parameters and SNphoto-z against their true values. The fitted pa-266

rameters are slightly biased for colour and stretch - less than 5% for267

any given bin. The bias in SNphoto-z can reach up to 13% for low-268

redshift events and has a complex structure. Chen et al. (2022) finds a269

similar structure, in particular for redshifts around 0.4, when compar-270

ing galaxy photometric redshifts obtained in redMaGiC galaxies and271

their spectroscopic ones. These luminous red galaxies are expected272

to have highly accurate photometric redshifts and were shown to be273

suitable for cosmology (Chen et al. 2022).274

In Figure 3, we plot the average behaviour of the SNphoto-z and275

colour/stretch for simulated SNe Ia. We find a pattern of o�sets276

resulting from degeneracies between colour/stretch and redshift. In-277

terestingly, around redshift 0.7 where noise starts dominating the A278

because the rest-frame UV regions has low flux, only 8, I are sam-279

pling the light-curve and the o�set reverses. Similarly, at redshift280

around 0.9 the noise dominates the 8 band thus light-curves are only281

MNRAS 000, 1–16 (2020)
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for the balanced dataset (same number of Type Ia and core-collapse205

SNe) and the more realistic DES test set. The balanced dataset is206

useful as an evaluation of the machine learning algorithm while the207

test dataset can be used to assess the reliability of the selected sam-208

ple as it is physically more representative. We find high-accuracies,209

purities and e�ciencies for both datasets.210

As in M22, we use ensemble predictions to select our sample. In211

Table 1, we obtain predictions with di�erent S����NN��� models212

trained with di�erent initiation parameters and average them to ob-213

tain an "ensemble probability". Here we use 5 models, also called214

an "ensemble set", trained with di�erent seeds. To report the perfor-215

mance of the methods, we quote the mean and standard deviation of216

a given metric using 3 ensemble sets.217

3.3 Performance for partial light-curves218

We now evaluate the performance of our trained classifier when using219

simulated partial light-curves. When training S����NN���, we crop220

light-curves to random time-ranges in the dataset, this produces a221

classification model robust for both complete and partial light-curve222

classification.223

We evaluate the performance on light-curves that were cropped224

to only contain photometric measurements until peak brightness in225

Table 2. As we use fewer photometric measurements per event, the226

performance is poorer. However this type of classification can be227

used for scheduling spectroscopic follow-up before SNe fade away.228

In the following, we use the single model classifier as the per-229

formance gain for the ensemble classifier is small and current early230

classification mechanisms use a single model. However, the extension231

to ensembles can provide a gain if resources are available to deploy232

multiple models as they are not very computationally expensive.233

4 ESTIMATING REDSHIFTS AND LIGHT-CURVE234

PARAMETERS SIMULTANEOUSLY235

In this work we will select a photometric SN Ia sample from DES236

data without the use of redshift information. After classification,237

we will determine the redshifts and SALT2 light-curve parameters238

simultaneously on light-curves using the SNphoto-z code described239

in Kessler et al. (2010).240

In this Section, using simulations, we examine biases arising from241

this fit and evaluate how these biases a�ect the e�cacy of sample cuts242

in improving the classification e�ciency and limiting contamination.243

We start by assuming that all the photometrically classified SNe244

are SNe Ia and fit them with the SALT2 supernova light-curve model245

based on (Guy et al. 2007) and extended to the optical+NIR (Pierel246

et al. 2018). We use the SNANA light-curve fitting program (Kessler247

et al. 2009) to simultaneously fit for I, C0, G1, 2 and G0; respectively248

redshift, time of maximum brightness, stretch, colour and amplitude249

as described in Kessler et al. (2010). To obtain better estimates of250

redshifts for SNe Ia, a weak distance-modulus prior is applied (Ap-251

pendix B) assuming a ⇤CDM cosmology and we use when available252

inferred photometric redshifts of the host galaxies. When no photo-253

metric redshift is available, we use a flat prior. We highlight that this254

SNphoto-z fit uses a cosmological model.255

Detailed analysis of biases on the light-curve parameters and red-256

shift is presented in Section 4.1 and their e�ect on the cuts to improve257

the classification by limiting contamination in Section 4.2.258

None of the derived redshifts (SNphoto-z) or SALT2 parameters259

are used for photometric classification. They are only used in Sec-260

tion 5.5 to study the sample properties after classification is done261

without this information.262

4.1 SNphoto-z and light-curve parameters biases263

We use the test simulations to evaluate the fitted light-curve param-264

eters and SNphoto-z. In Figure 2 we compare the fitted light-curve265

parameters and SNphoto-z against their true values. The fitted pa-266

rameters are slightly biased for colour and stretch - less than 5% for267

any given bin. The bias in SNphoto-z can reach up to 13% for low-268

redshift events and has a complex structure. Chen et al. (2022) finds a269

similar structure, in particular for redshifts around 0.4, when compar-270

ing galaxy photometric redshifts obtained in redMaGiC galaxies and271

their spectroscopic ones. These luminous red galaxies are expected272

to have highly accurate photometric redshifts and were shown to be273

suitable for cosmology (Chen et al. 2022).274

In Figure 3, we plot the average behaviour of the SNphoto-z and275

colour/stretch for simulated SNe Ia. We find a pattern of o�sets276

resulting from degeneracies between colour/stretch and redshift. In-277

terestingly, around redshift 0.7 where noise starts dominating the A278

because the rest-frame UV regions has low flux, only 8, I are sam-279

pling the light-curve and the o�set reverses. Similarly, at redshift280

around 0.9 the noise dominates the 8 band thus light-curves are only281
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Figure 11. Number of events as a function of cuts applied further split
according to the subsamples (e.g. M22 photometric SNe Ia in yellow, events
with hosts brighter than 24 mag in purple). From left to right the first four bars
represent an additional cut being applied. The right starred bar represents the
DES survey follow-up prioritisation strategy: sampling cuts plus a loose cut
in PSNID probabilities. We show the number of OzDES follow-up targets as
a dashed line.

Figure 12. Number of events in the photometrically selected SN Ia sample as
a function of host-galaxy A band magnitude. We show samples with di�erent
S����NN��� classification scores and a DES cosmology-like cut (solid lines)
and those events that had no redshift in the DES database (dotted). The host-
galaxy magnitude limit used in OzDES is shown as a vertical line.

6.2 Early classification for live SN follow-up583

In this Section, we explore the early identification of candidates for584

SN spectroscopic follow-up optimisation. This identification is done585

with partial light-curves, preferably before maximum brightness.586

DES light-curves are preprocessed using the following cuts:587

• Artifacts are rejected using the transient_status flag as in Smith588

et al. (2018).589

• We eliminate photometry that has been flagged as flawed using590

bitmap flags from S����� E�������� (Bertin & Arnouts 1996).591

To trigger follow-up, a sequence of detections must be identified.592

The DES trigger required at least one detection on 2 separate nights.593

To verify its performance, we select photometric measurements (i)594

within a time-window of 7 days before to 20 days after the DES-like595

trigger and (ii) within a time-window of 30 days before the observed596

Table 4. Selection of targets for spectroscopic follow-up. The first two rows
show the number of events selected from their partial light-curves using pho-
tometry -7<DES-like trigger<20 days. The following two rows show the same
statistics but for light-curves selected within a time-window of -30<peak<1
and then for -7<LSST-like trigger<20. For all cases, we only include events
with peak magnitudes brighter than 22.7 in any band, which was the OzDES
limiting magnitude for live transient follow-up.

.

cut total specIa M22 spec nonIa multiseason

-7<DES-like trigger<20

-7<DES<20 3250 336 776 120 230
SNN>0.5 1288 294 687 4 18

-30<peak<1

-30<peak<1 5702 359 810 144 622
SNN>0.5 1428 305 683 4 19

-7<LSST-like trigger<20

-7<LSST<20 3327 296 689 95 219
SNN>0.5 1305 264 618 4 28

peak and the observed peak. We apply (## > 0.5 classification597

threshold to select candidates for follow-up as shown in Table 4.598

We find that the median number of detections per SN in all bands599

for early classification using the DES-like trigger and peak selection600

methods respectively are: (i) 7 ± 4 and (ii) 6 ± 5 (errors are given by601

one standard deviation for all SNe).602

We compare our selection for potential live SN follow-up with the603

OzDES strategy for a magnitude limited sample. OzDES obtained604

1460 spectra of live-transients prioritising events that were brighter605

than 22.7. As shown in Table 4, for candidates with any band mag-606

nitude < 22.7 we find that SNN reduces the number of potential607

follow-up candidates by more than a factor of 3, maintaining most of608

the SNe Ia.609

Interestingly, S����NN��� is able to eliminate a large fraction610

of multiseason (e.g. AGN) events. These events were not part of611

the training set and this indicates that the classification is robust to612

out-of-distribution events.613

7 PROSPECTIVES FOR RUBIN AND 4MOST614

The Vera C. Rubin Observatory is expected to detect up to 10 million615

transients every night during the 10-year Legacy Survey of Space616

and Time (LSST). There is the potential of discovering hundreds617

of thousands supernovae for cosmology and astrophysical studies618

(LSST Science Collaboration 2009; Hambleton et al. 2022). This619

is several orders of magnitudes larger than DES. Rubin LSST will620

provide multi-band light-curves for all these transients. The 4MOST621

Time-Domain Extragalactic Survey (TiDES; Swann et al. 2019) will622

provide a large fraction of follow-up for host galaxies and live tran-623

sients with spectroscopy.624

Given the sheer volume of data from LSST, it will be crucial to625

optimise resources for the spectroscopic follow-up of hosts-galaxies626

and live supernovae.627

TiDES is expected to obtain host-galaxy redshifts for 50,000 SNe628

Ia up to redshift of 1. In Section 6.1 we have shown that S����NN���629

can drastically reduce the number of candidates sent for host-galaxy630

follow up while maintaining most of the SNe Ia in the sample.631

For follow-up of live transients, LSST will emit an alert when a632

detection occurs with S/N>5. These alerts will be received by Rubin633

Community brokers (e.g. F���, Möller et al. 2021). In Table 4 we634
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Also see Emille Ishida’s talk this morning on other early SNe Ia classifiers in Fink!
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B.M.O. Fraga et al.: Transient Classifiers for Fink

(a) CATS

(b) SuperNNova broad

(c) SuperNNova binary for SN-like

(d) SuperNNova binary for Fast

Fig. 8: ROC (left) and Precision-Recall (center) curves, and confusion matrix (right) for the classifiers in the test set.
For each cell in the confusion matrix, precision is shown on top in bold, and recall at the bottom in italics.
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Dark Energy Survey: 
- First SN Ia photometric classification for precision cosmology

- Photometric classification for ~complete SN Ia sample!


In the Rubin era, photometric classification allows:

- To harness most SNe Ia

- Early SN Ia identification


Fink broker will select SN Ia in Rubin with SuperNNova
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