REVIEW OF SNIA PROGENITORS

Faculty (Amsterdam) - <u>toonen@uva.nl</u> - Vidi laureate

Floris Kummer, Andris Dorozsmai, Caspar Bruenech, Adam Parkosidis, Karel Temmink, Yan Gao, Tjarda Boekholt (Oxford), Nathan Leigh (Conception), Alejandro Vigna-Gomez (Garching), Simon Portegies Zwart (Leiden), Boris Gaensicke (Warwick), Mark Hollands (Sheffield)

Model Binary evolution

Including: Stellar evolution

Stellar winds

- Physics of mass transfer
- Stability of mass transfer
- Mass loss and accretion
- Angular momentum loss
- Mass loss
- Gravitational waves
- Magnetic braking
- Tidal effects

Model Binary evolution

Including: Stellar evolution

Stellar winds

- Physics of mass transfer
- Stability of mass transfer
- Mass loss and accretion
- Angular momentum loss
- Mass loss
- Gravitational waves
- Magnetic braking
- Tidal effects

Model Binary evolution

Including: Stellar evolution

Stellar winds

- Physics of mass transfer
- Stability of mass transfer
- Mass loss and accretion
- Angular momentum loss
- Mass loss
- Gravitational waves
- Magnetic braking
- Tidal effects

Model Binary evolution

Including: Stellar evolution

Stellar winds

- Physics of mass transfer
- Stability of mass transfer
- Mass loss and accretion
- Angular momentum loss
- Mass loss
- Gravitational waves
- Magnetic braking
- Tidal effects

Model Binary evolution

Make synthetic population

Study e.g.

- characteristics of a binary population (e.g. mass ratio distribution, period distribution)
- frequency of an astrophysical event
- chemical enrichment of a region

Stable mass transfer

Common-Envelope

Make synthetic population

Regarding transients:

- Pick your favourite progenitor channel & study e.g.:
- Rates, delay time distribution
- Typical age of progenitor

Example 1:

- Channel: Helium star transfer mass onto a white dwarf
- * Typically young environment (e.g. Wang+ 09, Ruiter+ 11)
- Matches well with SNIax (Lyman+ 13, 18, Takaro+ 20, Maguire+ 23)

Example 2:

- * How many high-velocity surviving companions?
- Some WD candidates found (Shen+ 18, Raddi+19, Igoshev+ 23), but small amount of candidates might elude to channels without surviving companions, but see El Badry+ 23

BPS studies for SNIa progenitors:

- Yungelson et al. 1994
- Han et al. 1995
- Jorgensen et al. 1997
- Yungelson & Livio 2000
- Nelemans et al. 2001
- DeDonder & Vanbeveren 2004
- Han & Podsiadlowski 2004
- Belczynski et al. 2005
- Yungelson 2005
- Bogomazov & Tutukov 2009
- * Meng et al. 2009
- * Ruiter et al. 2009
- Wang et al. 2009 (2x)
- Claeys et al. 2010
- Meng & Yang 2010 (3x)
- Mennekens et al. 2010

- Wang et al. 2010
- Wang & Han 2010 (2x)
- Yungelson 2010
- Bogomazov & Tutukov 2011
- Meng et al. 2011
- Ruiter et al. 2011
- Chen et al. 2012
- Meng & Yang 2012
- Toonen et al. 2012
- Bours et al. 2013
- Claeys et al. 2013
- Mennekens et al. 2013
- Ruiter et al. 2013
- Wang et al. 2013
- Ruiter et al. 2014
- >2014 not even included yet...

Double white dwarfs

Suggested formation channels

 Classically: Chandrasekhar mergers (Iben & Tutukov '84, Webbink '84)

- Also: Sub-Chandrasekhar mergers
 - Violent mergers (e.g. Pakmor ea '10,'11,'12, van Kerkwijk ea '10, Sato ea '15)
 - Surface He detonations (Guillochon ea '10, Pakmor ea '13, Shen & Bildsten '14)
 - White dwarf collisions (Dense environments: Benz ea '89, Triples: Katz & Dong '12, Hamers+ '13, Toonen+, Abinaya)

ref: Toonen, Nelemans, Portegies Zwart 2012

Using the code:

Portegies Zwart+ '96, Nelemans+ 01, Toonen+ '12

 Delay time distribution =
 SNIa rate per unit mass of created stars as a function of time since a hypothetical instantaneous starburst

- * Giving robust shape for delay time distribution $\propto t^{-1}$
- Driven by gravitational wave inspiral (rather than population properties)

- * Giving robust shape for delay time distribution \propto t⁻¹
- * In line with observations (Maoz & Graur 17, Freundlich & Maoz '21, Castrillo+ '21)
- Driven by gravitational wave inspiral rather than population properties

Delay time (Myr)

Delay time (Gyr)

Taken from: Freundlich & Maoz '21 But see Toy+ 23 for lower rates in clusters at lower redshifts. Metallicity effect (Ruiter & Seitenzahl 25)?

Integrated rate

Integrated rate (1e-4/	BPS - SeBa	
Observations (field)	Graur+ '14, Maoz & Graur '17	16±0.3, 13±0.1
Observations (clusters)	Maoz & Graur '17, Freundlich & Maoz ' 21	54±3, 31±11
Chandrasekhar mergers	M1+M2 >1.38	4.2-5.5
All DWD mergers	All masses & flavours	31-32

Integrated rate (1e-4/Msun)		BPS - SeBa
Observations (field)	Graur+ '14, Maoz & Graur '17	16±0.3, 13±0.1
Chandrasekhar mergers	M1+M2 >1.38	4.2-5.5
All DWD mergers	All masses & flavours	31-32
Sub-chandrasekhar models ?		

Advantage of sub-Ch mergers

- Generally more common
- More massive mergers early on

 > if peak luminosity set by
 primary mass -> diversity &
 evolution of luminosity function
 (Shen+17,21)

Integrated rate (1e-4/Msun)		BPS - SeBa
Observations (field)	Graur+ '14, Maoz & Graur '17	16±0.3, 13±0.1
Chandrasekhar mergers	M1+M2 >1.38	4.2-5.5
Sub-chandrasekhar models:		

Integrated rate (1e-4/Msun)			BPS - SeBa
Observations (field)		Graur+ '14, Maoz & Graur '17	16±0.3, 13±0.1
Chandrasekhar mergers		M1+M2 >1.38	4.2-5.5
Sub-chandrasekhar models:			
v. Kerkwijk+ '10	Accretion of thick disk + compressional heating	q>0.8	
		q>0.9	
Pakmor+ '10,'11,'12	WD structure distorted in merger	q>0.8, M1>0.8	
		q>0.9, M1>0.8	
Sato+ '15	Total		
	Merger phase	0.9 <m1<1.1, 0.9<m2<1.1<="" td=""><td></td></m1<1.1,>	
	Merger remnant phase	0.7 <m1<0.9, m1+m2="">1.38</m1<0.9,>	
D6: Shen	Shen, Toonen, Graur '17 <—	M2>-10.2041(m1-0.85)^2+0.805	

Integrated rate (1e-4/Msun)			BPS - SeBa
Observations (field)		Graur+ '14, Maoz & Graur '17	16±0.3, 13±0.1
Chandrasekhar mergers		M1+M2 >1.38	4.2-5.5
Sub-chandrasekhar models:			
v. Kerkwijk+ '10	Accretion of thick disk + compressional heating	q>0.8	4.8-5.3
		q>0.9	2.3-2.6
Pakmor+ '10,'11,'12	WD structure distorted in merger	q>0.8, M1>0.8	1.1-1.3
		q>0.9, M1>0.8	0.3-0.4
Sato+ '15	Total		1.5-2.5
	Merger phase	0.9 <m1<1.1, 0.9<m2<1.1<="" td=""><td>0.02-0.09</td></m1<1.1,>	0.02-0.09
	Merger remnant phase	0.7 <m1<0.9, m1+m2="">1.38</m1<0.9,>	1.4-2.4
D6: Shen	Shen, Toonen, Graur '17 <—	M2>-10.2041(m1-0.85)^2+0.805	1.7-2.9

Helium as a facilitator

MESA + Flash

- Helium assists
 nuclear
 burning
- Need modestly enriched layer
- (e.g. Guillochon+ 10, Kromer+ 10, Woosley+ 11, Pakmor+ 13, Shen+ 14, Townsley+ 19, Pakmor+ w/ Toonen '21, Zenati+ w/Toonen

Hybrid white dwarfs

Hybrid white dwarfs

- CO core + He envelope (Iben & Tutukov '85, Yungelson+ '17, Zenati, Toonen+ '18)
- Stripped star in binary

Hybrid white dwarfs

Hybrid white dwarfs

- CO core + He envelope (Iben & Tutukov '85, Yungelson+ '17, Zenati, Toonen+ '18)
- Stripped star in binary

Hybrid white dwarfs

Hybrid white dwarfs

- * CO core + He envelope (Iben & Tutukov '85, Yungelson+ '17, Zenati, Toonen+ '18)
- Stripped star in binary

- Hybrid involved in ~25-30% of all WD-WD mergers
- Need ~15% to match SNIa rate (Maoz+ 18)

Zenati, Toonen+ '19

Silvia Toonen

Origin of Supernova Type Ia

Disruption of hybrid WD onto CO WD Disruption of CO WD through double detonation

Diversity

Disruption of hybrid WD onto CO WD Disruption of CO WD through double detonation

Spectra alike SNIa - Perets+ w/Toonen+ '19

- ~60-70% from hybrid mergers (Mco>Mhybrid, Mtot>1.15Msun)
- ~30-40% from massive CO+CO WD mergers (M1,M2>0.9Msun)

Disruption of hybrid WD onto CO WD Disruption of CO WD through double detonation

Disruption of a low-mass CO WD by a higher mass hybrid WD Disruption of hybrid WD through double detonation SN 2005E Model 0.63 HeCO + 0.5 CC 0.35 shift Relative Flux 11 Mar 20 0.05 5500 6000 6500 7000 7500 8000 8500 5000 3500 Restframe Wavelength (Å)Spectra alike Calcium-strong transients -Zenati+ w/Toonen+ '23 Old environments -> in line with Kasliwal+12, De+20

Disruption of hybrid WD onto CO WD Disruption of CO WD through double detonation

Disruption of massive He-rich hybrid WD onto CO WD

Helium detonation travels upstream triggering a double detonation of the hybrid WD -Pakmor+ w/Toonen '21

Silvia Toonen Origin of

Origin of Supernova Type la

Silvia Toonen Origin of Supernova Type Ia

Silvia Toonen Ori

Origin of Supernova Type Ia

Silvia Toonen

Origin of Supernova Type la

Other pathways?

Orbital Separation

Strong orbital shrinkage!

Need interactions for that

Finetuning to end with compact orbit

Can we think of other processes that shrink the binary or drive interactions?

Dynamically stable if $P_{\text{outer}} \gtrsim 5P_{\text{inner}}$

-> long-lived

Many stars have several stellar companions

Triple pathways

example: M1=3.95, M2=3.03, M3=2.73MSun, a1=19.7, a2 =636AU, e1=0.23, e2 =0.82, i=116

– binary case— triple case

courtesy of Adrian Hamers

Silvia Toonen

Stellar interactions & transients

Triple star evolution

example: M1=3.95, M2=3.03, M3=2.73MSun, a1=19.7, a2 =636AU, e1=0.23, e2 =0.82, i=116

– binary casetriple case

courtesy of Adrian Hamers

Silvia Toonen

Stellar interactions & transients

Triple star evolution

example: M1=3.95, M2=3.03, M3=2.73MSun, a1=19.7, a2 =636AU, e1=0.23, e2 =0.82, i=116

•Kozai-Lidov cycles (Lidov '62, Kozai '62)

courtesy of Adrian Hamers

example: M1=3.95, M2=3.03, M3=2.73MSun, a1=19.7, a2 =636AU, e1=0.23, e2 =0.82, i=116

courtesy of Adrian Hamers

Silvia Toonen

Stellar interactions & transients

Triple star evolution

example: M1=3.95, M2=3.03, M3=2.73MSun, a1=19.7, a2 =636AU, e1=0.23, e2 =0.82, i=116

refs: Toonen+ '20, Kummer+ '24

What happens if I add a third star?

Three-body dynamics leads to high eccentricities and close passages:

- close binaries due to enhanced tides & GW emission
- katalyse stellar interactions
 - In systems that would otherwise not interact
 - Earlier in the evolution -> changes the finetuning

(Typical) Binaries - ~1/4-1/3 of systems interact

Triples

~2/3-3/4 of systems interact

Take-home message

For every 3 binaries formed, at least one triple is born (Tokovinin+ '14, Moe+ '17)

Triples interact more often than binaries! (Toonen+ '20)

Triples on even footing with binaries

Triple code TRES

- Common evolution (Toonen+ '20)
- Supernova type Ia (Toonen+ '18)
- BH-BH mergers (Antonini, Toonen+ '17)
- Sequential mergers (Vigna-Gomez+ '20)
- Circumbinary planets (Columba+ '23)

- Unstable triples (Toonen+ 2022)
- Formation of cataclysmic variables (Knigge+ 2022)
- Formation of Barium stars (Gao+ '23)
- Massive stars (Kummer+ '23)
- CHE triples (Dorozsmai+ '24, Kummer+ '24)

TRES core team

github.com/amusecode/TRES

Andris Dorozsmai

Adam Parkosidis

Silvia Toonen, PI

Floris Kummer

Caspar Bruenech

Triple SNIa progenitors

Mergers

- (interactions with one set of simplified assumptions)
- Similar rate between triples & binaries
- Triple rate of 0.9-3.7 per 10000
 Msun compared to a binary rate of 3.2 per 10000 Msun (Rajamuthukumar + '23)
- Most models >97% from He
 WD + CO WD mergers
- Rest from CO WD + CO WD with M1>0.9Msun.

Collisions of white dwarfs

- Collision rate ~ 5e-4 2e-2
 per 10000 Msun (Toonen+ '17)
- Rates enhanced by fly by's
 (~1.5) or WD kicks (~2)
 (Michaely & Perets '15, Hamers & Thompson '19, Michaely '21)
- Rate of ~1.5-4e-2 when combinating with mass transfer (Rajamuthukumar + '23)

How good are the binary population synthesis models??

How good are the number estimates? e.g. rates or space densities?

- Space density of WD+WDs as fraction of single WDs
 <u>BPS models</u>
 - * *

•

SeBa

- Space density of WD+WDs as fraction of single WDs
 <u>BPS models</u>
 - ✤ 0.017-0.19 (Maxted & Marsh 99)
 - 0.01-0.04 (20-pc sample of WDs, Toonen+ 17, Hollands, Toonen +19)
 - 0.095 ± 0.020 ± 0.010 (SDSS statistics, Badenez & Maoz 12, Maoz & Hallakoun '17, Maoz+18)
- Helps to relieve tention for SNIa progenitors
- More LISA gravitational wave sources

* 0.02-0.04

LISA double WDs

- The SDSS statistics imply 60.000 sources! (Korol+ w/Toonen 22)
- * Typically BPS codes predict 10.000-30.000 LISA observable DWDs
 - SeBa: ~25.000 (Korol+ w/Toonen '17)
 - * Most recent BPS estimate: ~700 sources (van Zeist+ 24, Tang+ 24)
- Best WD+WD sample to date (ZTF eclipsing & DBL sources) imply minimum of ~7000 sources (van Zeist+ w/Toonen subm.)

- Periods from the GW frequency
- * Chirp mass only for inspiring sources $\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$
 - ~1000 WD+WD with accurate chirp masses
 - ~100 massive WD+WD with accurate chirp masses

Past, present & future

Past:

~10 yrs ago : ~50 WD+WDs known, detected with variety of methods

Present: ~300 WD+WDs

- Mostly from: SDSS ELM survey (Brown+ '10, '22) & SPY survey (Napiwotzki et al. '20)
- But few (~77) with well measured properties for both stars
 - 31 discovered in 2024 by the DBL survey (Munday+ incl. Toonen '24)
 - ZTF: ~30 eclipsing WD+WDs (van Roestel in prep.)

Future:

- Gaia satellite: ~30 eclipsing WD+WDs (mid 2026), thousands noneclipsing need EM followup (Korol+ 17, priv. comm. Roestel)
- Vera Rubin Observatory: ~200 eclipsing WD+WDs (Korol+ 17, priv. comm. Roestel)
- DBL survey : ~200 more by completion of survey

Finding SNIa progenitors?

Rebassa-Mansergas, Toonen+ 19: chance of finding a (Ch or sub-Ch)
 WD+WD progenitor low (~0.00001- 0.00002)

Finding SNIa progenitors!

- Rebassa-Mansergas, Toonen+ 19: chance of finding a (Ch or sub-Ch)
 WD+WD progenitor low (~0.00001- 0.00002)
- To be published tomorrow in Nature astronomy (Munday+ w/Toonen)

WDJ181058.67+311940.94

First SNIa progenitor

- ✤ 0.83+0.72Msun @ 14.24 hr
- Merger in 22Gyr
- Close by: 49pc
- Subluminous SNIa from a double detonation based on Arepo simulations

Summary

WD+WD mergers as progenitors of SNIa

- Delay time distribution typically in agreement with observations
- Absolute rate?
 - Glass half full: Ch-channel in agreement with observations
 within the BPS uncertainties
 - Glass half empty: sub-Ch channels typically lower rates

Improving the BPS models:

- Taking into account triple evolution
- Constraints from WD+WD observations
 - DBL survey already doubled the number of WD+WD systems with well measured properties
 - And found the first SNIa progenitor