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Introduction

The hardness-duration correlation for BATSE bursts. HR is the ratio of 
fluence between BATSE channels 3 (100-300 keV) and 2 (50-100 keV), 
short bursts; s, long bursts; solid line, a regression line for the whole sample; 
dotted lines, the regressions lines for the short and long samples, 
respectively. From Qin et al., 2000.
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•Gamma-ray bursts (GRBs) are short and intense 
pulses of soft gamma-rays;
•Duration: ≃10-2 - 102 s ; 
•long GRB (T90  2 s), short GRB (T90  2 s), 
(Kouveliotou et al., 1993), however see now GRB 
211211A and GRB 230307A (long GRB with 
kilonova);
•energetics: Liso ∼1051- 52  erg/s, and narrowly 
beamed;
•Associated to a catastrophic event: death of star 
(Paczynski, ’98), BH mergers (Paczynski, ’91), BNS 
mergers (Eichler et al., 1989), TDEs...;
•Collapsar model: core collapse + bipolar jet 
driven by a central engine (compact object) 
(MacFadyen & Woosley 1999; MacFadyen et al. 2001);
•What are the signatures of a jet?
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Signatures of high velocity

from Mazzali et al. (2000)
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Signatures of high velocity

from Mazzali et al. (2000)

from hydrodynamical models of CO stars
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Signatures of high velocity
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v0 =
2E0

Mej
Fig: Energy-velocity distribution as a function of the velocity for various SNe Scale velocity:
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Distribution of GRB events with respect to their T90

tbo ≃ 15 sec ( Liso

1051 erg/s )
−1/3

( θ
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Estimate for jet breakout:

•Jets (try to) drill their way out of the star;


•Some collapsars (or a large fraction) harbor 
a jet, (  ) ;


•Not all these jets might be able to break out 
(  ) 

tγ ≃ tbo − te

te < tbo
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Jet - matter interaction

ρjhjΓ2
j Γ

2
h(βj − βh)2 + Pj = ρahaΓ2

aΓ2
h(βh−βa)2+Pa

Ram pressure balance: 

βh =
βj−βa

1 + L̃−1/2
+βa

Jet head dynamics: Jet collimation parameter

L̃ ≡
ρjhjΓ2

j

ρahaΓ2
a

≃
Lj

Σjρac3Γ2
a

zchoke = ∫
tchoke

0
βhcdt ≃ βhctchoke =

βhc
1 − βh

teHeight of the jet after end of injection:

from Bromberg et al. (2011)

from Bromberg et al. (2011)
from Hamidani & Ioka (2021)
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Simulation setup from Harrison et al. (2021)

2D cylindrical RHD simulations performed with PLUTO (Mignone, 2007): 

• Jet injected through a narrow nozzle w/  Σj = πr2
j

• Relativistic energy flux  Lj = ∫Σ
T0z dΣ0z = ρjhjc2Γ2

j βjc

ρj =
Lj

hjc3Γ2
j βj

Pj =
hj − 1

4
ρjc2

• density profile for the stellar atmosphere:  

ρ(R) = ρ* ( R*

R
−1)

2

+ ρ0, for R ≤ R* ,

ρ0, for R > R* .

lo
g

ρ
[g

cm
−

3 ]

r [1010 cm]

• We can scale our system via following transformations:  

R* = λR′￼*
E0 = ηE′￼0

te = λt′￼e
ρ* = ηλ−3ρ′￼*

L̃ = L̃′￼

zchoke/R* = z′￼choke/R′￼*

z
[1

010
cm

]
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with  ,  ,  ;Γ0,j ≃ 1/(1.4θj) hj = 100 E0 = 1051 erg

unshoked jet

Jet head

Jet cocoon

Stellar 
envelope
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Choked jets simulations

from Pais, Piran, Nakar (2023)

• Injection phase lasting for ~ few s (1 s in this picture);

• Jet choking (few tenths of second);

• Cocoon Expansion and breakout;

• Breakout and star blanketing.
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Successful jets simulations
• Injection phase lasting for ~ few s (1 s in this picture);


• Injection continues or stops before jet is 

• Breakout;

• Jet material spreading sideways;

≃ (2/3)R*

from Pais, Piran, Nakar (2023)
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Jet characterization

• Does the choking height mirror the energy-velocity distribution?

from Pais, Piran, Nakar (2023)

• Good correlation with jet-cocoon volume vs total volume:

β0 = 2E/Mc2 ⟨ρ*⟩ ≃ ⟨ρcocoon⟩ βbo ≃ β0
V*

Vbo
21
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Energy-velocity distribution (at the homologous phase)
• Set of jet 

simulations for 
different opening 
angles and engine 
times: 
(θj , tengine , V*/Vbo)

from Pais, Piran, Nakar (2023)23



Energy-velocity distribution (at the homologous phase)
• Set of jet 

simulations for 
different opening 
angles and engine 
times: 

from Pais, Piran, Nakar (2023)

(θj , tengine , V*/Vbo)
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Cocoon volume - choking height correlation

Correlation between  and cocoon volumezchoke

from Pais, Piran, Nakar (2023)

Vbo vs . zch

(Γβ)cutoff vs . Vbo
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Origin of the ejecta with different velocities
from Pais, Piran, Nakar (2023)
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from Pais, Piran, Nakar (2023)

Origin of the ejecta with different velocities
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Effect of different stellar profiles at the homologous phase
from Pais, Piran, Nakar (2023)

ρ(R) = ρ* (x)−α (1 − x)n
Generalized profile:
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Profiles at different angles

Same volume ratio produces 
similar distributions

Different jet parameters…
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Profiles at different angles

Same volume ratio produces 
similar distributions

Different jet parameters…

ρ(R) ≃ v−5E(v)
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Takeaway points / Summary

•  jets choked (not too deep) provide a natural explanation to the fast material 
seen in the early spectra of stripped-envelope SNe without LGRB;

•  SNe not associated with GRBs possibly harbor choked jets while LGRBs 
contain a successful jet; 

•  All jet-driven explosions with  have a roughly constant amount of 
energy per logarithmic scale in ;

•  jets, even if choked, carry a significant amount of energy at high-velocity matter;
•  However, to observe broad absorption lines, we need a choking at ;
•  Off-axis material will become optically thin faster, disappearing earlier in the 

spectra, making the observation less likely… ;
•  Our results can be easily scaled for longer jets and bigger stars according to our 

scaling relations, generalizing the result; 

zchoke ≃ R*
Γβ

zchoke ≃ R*
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