

The fate of the progenitors of Luminous Red Novae NIR and MIR observations years after the outburst

Andrea Reguitti

Padova, 2 April 2025

Gap Transients

Interacting events, at peak $-10 < M_V < -15 \text{ mag}$

Evolutionary timescales: weeks to months (Pastorello & Fraser 2019)

Among them: Luminous Red Novae

See Morgan's talk

From Cai+22b

Coalescence of 2 non-degenerate stars within a Common Envelope (Pastorello+19d)

Faint observed in MW, bright only outside

Coalescence of 2 non-degenerate stars within a Common Envelope (Pastorello+19d)

Faint observed in MW, bright only outside

Brightest events from more massive progenitors (Kochanek+14, Blagorodnova+21, Cai+22a)

Coalescence of 2 non-degenerate stars within a Common Envelope (Pastorello+19d)

Faint observed in MW, bright only outside

Brightest events from more massive progenitors (Kochanek+14, Blagorodnova+21, Cai+22a)

Progenitors identified by HST as YSG with $M \sim 15-30 M_{\odot}$

Coalescence of 2 non-degenerate stars within a Common Envelope (Pastorello+19d)

Faint observed in MW, bright only outside

Brightest events from more massive progenitors (Kochanek+14, Blagorodnova+21, Cai+22a)

Progenitors identified by HST as YSG with $M \sim 15-30 M_{\odot}$

Which is the outcome of the LRNe events?

Sample

Table 1: The LRN sample analysed in this paper.										
Object name	Host galaxy	Distance (Mpc)	E(B-V)	MJD of 1st peak	Reference					
AT 1997bs	NGC 3627	9.4±0.3	0.04	50560	(1)					
AT 2007sv	UGC 5979	18.85 ± 1.0	0.83	$< 54454^{1}$	(2)					
AT 2011kp ²	NGC 4490	9.6±1.3	0.32	55797	(3)					
AT $2013 lw^2$	UGC 12307	39.7 ± 2.7	0.22	5648 1 ³	(4)					
AT 2015fx ²	NGC 2748	23.8 ± 2.0	0.024	57069	(5)					
AT 2015dl ²	M 101	6.4 ± 0.5	0.008	57070	(6)					
AT 2018bwo	NGC 45	6.8 ± 0.5	0.02	<582521	(7)					
AT 2019zhd	M 31	0.78 ± 0.01	0.055	58892	(8)					
AT 2020hat	NGC 5068	5.2 ± 0.2	0.37	58954	(9)					

9 extragalactic LRNe already studied in literature

>5 yrs old (oldest from 1997)

From 0.8 to 40 Mpc

Images from many years later

Archival searches

Detected in MIR; still visible!

AT 2007sv in 2010 (SST)

AT 2020hat in 2019 (SST)

AT 2013lw in 2014 (SST)

AT 2018bwo in 2022 (HST)

AT 2019zhd in 2022 (HST)

AT 2020hat in 2020 (WISE)

AT 2015dl

Studied by Blagorodnova+17 In 2017, *r-[3.6]* > 10 mag! Visible by SST for 4.5 yrs Dramatic change in MIR color

NGC4490-OT2011 (HST)

Studied by Smith+16

Disappeared in HST F814W and F547M

But still detected in F658N

NGC4490-OT2011 (SST)

8-yrs SST MIR LC!

Linear decline

Minor color evolution

NGC4490-OT2011 (JWST)

Still visible in 2023! (+12.5 yrs)

Detected in F187N \rightarrow Pa α emission

Studied by Van Dyk+99,00 (SN impostor)

Recovered SST detections in 2004 (all channels)

Thanks Enrico for the template subtraction tool

AT 1997bs

F814W

Studied by Van Dyk+99,00 (SN impostor)

Recovered SST detections in 2004 (all channels)

Thanks Enrico for the template subtraction tool

Detected by HST (F814W) in 2023!, at same mag as in 2014 (Adams & Kochanek 15)...

And by JWST/NIRCam in 2024 (+27 yrs)!

AT 1997bs

F814W

MIR color curves

LRNe tend to remain bright in MIR for years

SEDS

See also Steinmetz+25

 $T_{BB} = 484 \pm 12$ K, $R_{BB} = 234 \pm 20 \text{ AU}$

2023 HST+JWST: $T_{BB}=3200\pm150$ K, $R_{BB}=220\pm20 R_{\odot}$

→ merger survivor expanded, cool object, ~RSG (M6-7 III)

Envelope fragmentation

SEDs

2023+2024 JWST: T_{BB}=425±10 K, R_{BB}=123±13 AU

3 clear excess:

F115W (warm remnant?)

F187N (Pa α line)

F770W (IR echo?)

3 emitting BBs?

•

•

 $M_{\rm d}B_{\lambda}(T_{\rm d})\kappa_{\lambda}(a)$ $F_{\lambda} =$

	0	,				0		
Dust species	AT 2015dl (+3.6 yrs)		AT 1997bs (+7 yrs)		AT 2011kp (+7 yrs)		AT 2011kp (+13 yrs)	
	$M_d~(imes 10^{-6} M_{\odot})$	T_d (K)	$M_d~(imes 10^{-6} M_{\odot})$	T_d (K)	$M_d~(imes 10^{-6} M_{\odot})$	T_d (K)	$M_d (\times 10^{-6} M_{\odot})$	T_d (
Graphite $a = 0.1 \mu m$	1.26	569	32.6±1.3	373±16	17.1	405	6.2±1.4	350:
Graphite $a = 1.0 \mu \text{m}$	0.16	773	3.0 ± 0.6	470±13	2.22	496	0.80±0.16	416±
Silicates $a = 0.1 \mu \text{m}$	1.83	731	30.2 ± 4.4	463±9	25.5	479	9.0±1.9	405
Silicates $a = 1.0 \mu \text{m}$	1.19	683	25.4 ± 6.4	429 ± 14	16.5	458	6.0±1.2	389:

- Assume optically thin dust shell
- $\kappa_{\lambda}(a)$ from Fox+10 and Valerin+25a
- \neq chem. composition and grain sizes

Next step: use *Cloudy* to model the SEDs

Dust masses

T~350-500 K

 M_d ~10⁻⁷ to 3x10⁻⁵ M $_{\odot}$

See Kasliwal's talk

Conclusions

- LRNe remain bright in MIR for years
- Similar evolution of MIR color curve: ~0 pre-max, blue at max, +0.5 mag post-max, red yrs later
 - From IR SEDs: produce M(dust) of 10-6 to 10-5 Mo
- Remnant detected as a cool, expanded merger (~red supergiant)

