Tracing the mass-loss history from type II supernova explosions back through the red supergiant phase. Stefano Valenti

Thank you

Enrico Cappellaro _____

Padova group meeting 2012

Bachelor's thesis defense 2003

Gold Era to study Transients

Do we still need more SNe?

What ANOTHER spectrum two weeks after maximum of a SN is going to teach us? something new?

100 days

Distance Less Than 40 Mpc = DLT40

UC Davis

UC Davis

UC Davis

Yize Dong Harward University

Michael Lundquist Keck

David Sand Univ. of Arizona

Azalee Jeniveve Bostroem Person University of Univ. of Arizona Arizona

Bhagya Manisha Subrayan Shrestha Univ. of Arizona Univ. of Arizona

Northwestern

Jennifer Andrews Gemini

Saurabh W Jha **Rutgers** University

Daryl Janzen University of Saskatchewan

Kaew Samaporn Tinyanont NARIT Griffin Hosseinzadeh UC San Diego

NSF)	Distanc	ce Less Than 40 Mpc	= DLT40
2017	1 Chile	Search for SNe in nearby galaxies with a 24 hours cadence	400-600 galaxies every 24 hours
2019	1 Chile 1 Australia	Search for SNe in nearby galaxies with a 12 hours cadence	400-600 galaxies every 12 hours
2021	1 Chile 1 Australia 1 Canada	Search for SNe in nearby galaxies with a 12 hours cadence 24 hours (dec >20°)	800-1200 galaxies every 12/24 hours

~ 15-20 nearby SNe per year within 24h from last non-detection

Tinyanont

Australia

TRT-SB0

DLT40 follow-up

Distance Less Than 40 Mpc = DLT40

Constrain the mass loss from the early spectroscopy $M_{CSM} \sim 10^{-3}$ - $10^{-2} M_{\odot}$ /yr

Shrestha+ 2024

Robotic small telescope are the only way to provide high cadence observations of nearby transient!

Measure mass loss after SN exploded

Gal-Yam+ 2014

Measure mass loss after SN exploded

Gal-Yam+ 2014

Gal-Yam+ 2014, Groh 2014, Shivvers+ 2015, Terreran+ 2015, Khazov+ 2016, Dessart+ 2017, Yaron+ 2017, Leonard+ 2000, Hosseinzadeh + 2022, Terreran+ 2022, Bostroem+ 2023, Pearson+ 2023, Jacobson-Galán+ 2023, Dessart+ 2023, Shrestha+ 2024, Andrews+2024,, Hiramatsu+ 2024, Meza-Retamal+ 2024, Jacobson-Galán+ 2024, Andrews+2025

Enhanced mass loss before exploding $\dot{M}_{CSM} \sim 10^{-3} - 10^{-1} M_{\odot}/yr$

What is making mass loss to increase in RSG?

Enhanced mass loss before exploding $\dot{M}_{CSM} \sim 10^{-3} - 10^{-1} M_{\odot}/yr$

Mass loss in RSG $\dot{M}_{CSM} \sim 10^{-7} - 10^{-5} M_{\odot}/yr$

Tracing the mass-loss history from type II supernova explosions back through the red supergiant phase.

Light curve modeling

UV as a Probe of Mass Loss

 $\rho \, [\mathrm{g}\,\mathrm{cm}^{-3}]$ -14Original With smooth dense shell With clumped dense shell -181.0 - O -- Si -- \bar{e}_{sh} He 0.8 $\overset{\mathrm{qs}}{\overset{\circ}{\cdot}}$, $\overset{\circ}{\cdot}$ 0.4 0.2 0.0L 10 12 6 8 $V [1000 \text{ km s}^{-1}]$

- Artificial introduce a dense shell
- Deposit a "shock power" in the dense shell

Dessart+ 2022

SN 2023ixf in M101

Bostroem et al 2024

GO-17205 (PI Zimmerman) DD- 17313 (PI Bostroem) GO-17497 (PI Valenti) DD-17610 (PI Valenti) GO-17772 (PI Bostroem)

Modeling CSM Interaction Power

Bostroem+ 2024

Tracing the Full Mass-loss History

Zhang+2023, Jacobson-Galán+ 2023, Grefenstette+2023, Chandra+ 2024

Mass loss increased a few years before the explosion

Bostroem+ 2024

We will trace even further mass-loss history for SN 2023ixf

Additional UV spectra have been acquired and will be used to trace mass-loss up to ~600-700 days.

Bostroem+ (in prep)

GO-17205 (PI Zimmerman) DD- 17313 (PI Bostroem) GO-17497 (PI Valenti) DD-17610 (PI Valenti) GO-17772 (PI Bostroem)

Dessart+ 2022

You can use UV photometry with two filters to trace the mass loss of a larger sample of SNe (10 SNe during current HST cycle).

GO-17796 (PI Valenti)

You can use UV photometry with two filters to trace the mass loss of a larger sample of SNe (10 SNe during current HST cycle).

GO-17796 (PI Valenti)

Thanks

extra slides

You can use UV photometry with two filters to trace the mass loss of a larger sample of SNe (10 SNe during current HST cycle).

GO-17796 (PI Valenti)

			HOME N	IY OBSERVATOR	RY ~ SKYNE	T LIVE TELESCOPE	SITES ~ HE
Telescope Status							
Telescope	Control	Sun	Weather	Dome	State	Observation	RA Dec
					CAMERA	Observation 5150941	16:34:41.32
DSO-14	SKYNET	-29.72	GOOD	OPEN	EXPOSING		57:07:12.97
D 00 /7	010/0157		0000	00511			20:24:32.80
DS0-17	SKYNEI	-29.72	GOOD	UPEN	IDLE	None	-20:02:43.5
MLC PCOS		20.22	RAD	CLOSED	IDI E	Nono	11:35:20.34
MLC-RCOS	6 SKINEI	-32.33	BAD	CLOSED	IDLE	None	-00:14:48.3
OALLI-CDK5		31.26	GOOD	CLOSED	IDI E	None	05:32:40.74
	SKINET	01.20	GOOD	GLOGED	IDEE	None	22:32:24.31
PROMPT-US		-13.65	BAD	CLOSED	CAMERA	None	17:35:12.39
	NON WANDAL	-10.00		GLOGED	ABORTED	None	50:59:43.56
B-COP	SKYNET	28.68	BAD	CLOSED	MOUNT	None	00:00:00.00
	ci			020020	ERROR		00:00:00.00
BBBT	SKYNET	-27 67	GOOD	OPEN	IDI F	None	20:51:16.88
	ONTHET	21.01	0000	OF LIT		Hono	33.03.20.56

Skynet observations

- flat field, astrometry
- cosmic rejection
- download @ UC Davis processed < 5 minutes -

Skynet observations

- zeropoint
- difference image
- candidate detection
- Machine learning score

- flat field, astrometry
- cosmic rejection
- zeropoint
- difference image
 - candidate detection
 - Machine learning score

download @ UC Davis processed < 5 minutes

Skynet

observations

Robotic follow-up (activated in January 2024) DLT40 discover and TNS transients within 40 Mpc

download @ UC Davis processed < 5 minutes

~25 min

Skynet Automatic confirmation image for high ML score

If the object is real, trigger multi band photometry

Robotic follow-up (activated in April 2024) DLT40 discover and TNS transients within 40 Mpc

download @ UC Davis processed < 5 minutes

Skynet observations Automatic confirmation image for high ML score

> If the object is real, trigger multi band photometry

> > If the object is detected again, trigger a FLOYDS spectrum !

~ 6-12 hours

Robotic follow-up (activated in April 2024) DLT40 discover and TNS transients within 40 Mpc

download @ UC Davis processed < 5 minutes

Skynet observations

Automatic confirmation image for high ML score

> If the object is real, trigger multi band photometry

> > If the object is detected again, trigger a FLOYDS spectrum !

or

Manual follow-up activated by a DLT40 member from the webpage

		Robotic foll DLT40 disc	ow-up (activover and T	opril 2 ents v	024) vithin 40	Мрс			
down proce	lload @ U essed < 5 I	C Davis minutes		C	or				
Skynet observatio	Auton	natic confirmation for high ML scor	Manual follow-up activated by a DLT40 member from						
		the object is rea multi band phot	I, trigger ometry	the we)e			
TNS Name	SNEX	DLT40 Name	Targetid (idcandidates)	Field	Class	ification	Targetid (ids	ource)	
	NED		<u>9110547</u>	995	None		5316120		
RA	DEC	RA (ecliptic)	DEC (ecliptic)	RA (galactic)	DEC	DEC (galactic)		Following	
168.33568	-26.71102	180.85775	-28.96264	277.23781	31.22	053	No		
change a classification D	dd Submit TNS LT name	Submit GCN run limits run at	las run ztf check ztf	<u>fast trigger</u> fas Prompt5PR	<u>tt trigger</u> OMPT-MO-1	<u>fast trigger</u> PROMPT-USASK	<u>fast trigger</u> Prompt2	<u>submit t</u> MMT (be	
eyeball	20	20 60414-6	60414-60434	45 🗘 45	•	45 🗘	45 🗘	Longslit	

Robotic follow-up (activated in April 2024) DLT40 discover and TNS transients within 40 Mpc

or

Make the discovery public on TNS or GCN

Manual follow-up activated by a DLT40 member from the webpage

TNS Name SNEX			DLT40 Name		Targetid (idcandidates)		Fie	Field		Classification		Targetid (idsource)			
	NED						<u>9110547</u>		<u>995</u>	5		None		<u>5316120</u>	
RA	DEC			RA ((ecliptic)		DEC (ecli	ptic)	RA	A (galactic)		DEC (g	alactic)	Following	
168.33568	-26.71102			180.	.85775		-28.96264	ļ	27	7.23781		31.2205	53	No	
change add classification DLT n	submit	TNS	Submit	t GCN	<u>run limits</u>	run atlas		<u>run ztf</u> check ztf		fast trigger Prompt5	fast trigger PROMPT-N	<u>r</u> 10-1	<u>fast trigger</u> PROMPT-USASK	<u>fast trigger</u> Prompt2	<u>submit to</u> <u>MMT (beta)</u>

Robotic follow-up on TNS discovery

€

Robotic follow-up (activated in April 2024) DLT40 discover and TNS transients within 40 Mpc

or

DLT40 BOT APP 7:12 AM

TNS transient in DLT40 - 23.560 Mpc - 0.42 arcmin TNS object: 2024inv DLT40 galaxy: NGC3524 974 last non detection is 0.3 hours old rising 2.0 mag from non detection discovery mag: 18.3 I will add this object to the idcandidate table new candidate: 9128446 I am also triggering an image to confirm if the object is real

9:13 AM

Manual follow-up activated by a DLT40 member from the webpage

TNS Name	SNEX			DLT40 Name		Targetid (idcandida	ates)	Field		Classif	ication	Targetid (idso	urce)
	<u>NED</u>					<u>9110547</u>		<u>995</u>		None		<u>5316120</u>	
RA	DEC			RA (ecliptic) DEC (ecliptic) RA (galactic)			DEC (galactic)		Following				
168.33568	-26.71102			180.85775		-28.96264		277.23781		31.2205	53	No	
abango					rup etice	run atf]	foot triggor	foot triggo	-	fast trigger	fact trigger	oubmit to
classification DLT n	Submi	t TNS	Submit (<u>run allas</u>	check :	ztf	Prompt5	PROMPT-N	MO-1	PROMPT-USASK	Prompt2	MMT (beta)

DLT40: result I A supernova slamming in the companion star ~ 20 times the radius of the Sun

Search for EM counterpart of GW with DLT40 02

Select all galaxies within 40 Mpc

Select only galaxies with 50% of the mass

Only 20-30 galaxies to monitor (500 deg^{^2})

DLT40 Kilonova discovery

20 galaxies in the aLIGO/aVirgo region 30 galaxies in the FERMI region

NGC4993 obs. by DLT40

8 months observations of NGC4993

The luminosity of DLT17ck decrease 1.1mag per day

Search for EM counterpart of GW with DLT60 02

Select all galaxies within 60 Mpc Select only galaxies with 50% of the mass Only 20-30 galaxies to monitor (500 deg^{^2})

03

45

DLT40:3 sites, 4 telescopes(100Mpc)

GLOBAL TELESCOPE NETWORK

What's next?

Is DLT40 still useful for transient astronomy?

• A suite of small- and medium-scale ground- and space-based observational facilities across the electromagnetic spectrum to discover and characterize the brightness and spectra of transient sources as they appear and fade away.

DLT40 on steroids?

Adding a new network of telescopes to monitor nearby transients and follow-up new transients

Kaew Samaporn Tinyanont

National Astronomical Research Institute of Thailand

DLT40

Search for SNe in nearby galaxies with a 12 hours cadence

Supernova Feature	Time Scale	Brightness	Probe of?
Core Collapse SNe			
Shock Breakout Cooling/	$\lesssim 3 \text{ days} \text{ (best case)}$	$-17 < M_V < -15$	Progenitor Radius &
Flash Spectroscopy			Energy/Ejecta Mass
			CSM Comp/Extent
Pre-Explosion Outburst	Days to weeks	$-15 < M_V < -14$	Ejected mass &
			Explosion Mechanism
SN Ia			
Light Curve Shocking	<5 days (Red Giant)	$-17 < M_V < -16$	Nondegenerate
	$\lesssim 1 \text{ day (MS)}$	$-16 < M_V < -15$	Companion Test
Early light curve shape	<3 days	$M_V < -14$	Nickel Dist.
			Progenitor Radius
Carbon	Early as possible	$\mathbf{N}\mathbf{A}$	Double
			Degenerate Test
Faint/Fast Transients			
(not exhaustive)			
SN .Ia	$\sim 1 \ { m wk}$	$M_V \sim -16$ at max	WD-WD Physics
Ca-Gap Transients	$\sim 10 \text{ days}$	$-15 \lesssim M_V \lesssim -16$	Unknown Stellar Death
Kilonova	$\sim 1 \text{ day}$	$M_{I} \sim -15?$	GW Physics
Off-Axis/Dirty GRBs	$\sim 2 \text{ days}$	Varies	Relativistic Explosion
			Physics