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A central issue in Massive Star Evolution:
SHEDDING THE HYDROGEN ENVELOPE

H-rich RSGs

Massive stars Type lI-P/ll-L SNe

are born as H-
rich O-type
stars on the
main sequence,

eird things in between
and they die as: (we 'ng )

YSG, BSG, LBV, other

Type lin, Ibn, llb, ll-pec,

H-free Wolf-Rayet or
lower-mass He stars

Type Ib/lc SNe, GRBs




A central issue in Massive Star Evolution:
SHEDDING THE HYDROGEN ENVELOPE

2 competing stories for how we make WR stars and stripped envelope SNe

winds

Requires high luminosity (high Mzaus)
Stronger at higher Z (line-driven or dust)

Observed classes are a monotonic time
sequence of progressive mass loss:

Ostar & LBV =2 WR = SN lIbc
or RSG

Binary RLOF

Works across all Mzaus
Can work at low Z too

Observed classes are a result of
different evolutionary paths:

Mass donor, mass gainer,
common env., merger, etc.
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LBV Eruptions
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Luminous Blue Variables (LBVs): Diverse observed phenomena. Irregular brightening
events associated with eruptive mass loss of massive stars (20-200 Mg). Timescales of
10 d to 20 yr, and brightening of 0.1 mag to 7 mag. Some are minor and caused by
temperature changes with little increase in wind mass loss, while some show major
increase in Lg, and lots of mass loss and explosive outflows. Bulk outflow speeds of 100-
1000 km/s typically, but some faster material too.

For recent LBV review, see Smith 2025 chapter in the Encyclopedia of Astrophysics (out soon).



PHYSICAL MECHANISM

We still don’t know what triggers LBV eruptions.
Something must provide 1048-10%° ergs of extra energy.
Usually people discuss 2 main scenarios:

1.

LBV Eruptions

Super-Eddington outbursts (a.k.a. “single-star outburst”). This is the more
traditional view. Can drive mass loss in principle if you exceed Lgy4q4, Obviously,
but why does L increase in a single star in the first place? There has never
been a model for this. Even if we ignore that, SE winds fail to account for
many of the detailed observations (especially explosive high velocities and high
KE/E,q ratio, spectral evolution, etc.).

Binary interaction events, mergers, accretion, etc. Merger event easily
provides the necessary energy. Combination of inspiral, outburst, and CSM
interaction can potentially account for most LBV-like transients (including LBVs,
SN impostors, LRNe, ILOTs, etc.), and their diversity.

Prototype: Eta Car was a merger in a triple (Smith et al. 2018)
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Eta Carinae: Historical visual observations of 19th century “Great
Eruption”. Transitioned from yellow to very red over >2 decades.

Light Echoes: Eta Car’s
eruption happened before the
invention of the astronomical
spectrograph. But we can get
spectra using light echoes!

Me, Armin Rest, Fed Bianco,
Jen Andrews, Jose Prieto,
Jacob Jencson, et al.



Exceptionally fast ejecta seen in light echoes of Eta Carinae’s Great

Eruption
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Light echoes from the plateau in Eta Carinae’s Great Eruption reveal a

two-stage shock-powered event MNRAS, 480, 1466
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Giovanni Maria Strampelli*!° and A. Zenteno’

Evolution of light echo spectra over several years
during plateau shows a major transition.

Stage I: Early peaks, early plateau.

« Slow outflow (150-200 km/s), cool temp,
absorption lines, weak narrow emission lines
(Rest +12, Prieto +14).

Stage II: Late 1840s/1850s plateau.
* Narrow emission lines got broader (650 km/s)
* Very broad emission wings appeared (10,000-
20,000 km/s).
(Spectra look a lot like the broad + intermediate
line profile shapes in SNe lIn)
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Light echoes from the plateau in Eta Carinae’s Great Eruption reveal a
two-stage shock-powered event MNRAS, 480, 1466
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This transition from a slow to fast outflow coincided with ejection

date of Homunculus inferred from proper motions with HST.




Light echoes from the plateau in Eta Carinae’s Great Erup{
two-stage shock-powered event MNRAS, 480, 1466

Nathan Smith.'* Jennifer E. Andrews.! Armin Rest.? Federica B. Biar
Jose L. Prieto.>® Tom Matheson,” David J. James.® R. Chris Smith,°

Giovanni Maria Strampelli*!° and A. Zenteno’

Merger in a triple (Smith +18): Our interpretation
of this observed two-stage transition is a slow,
dense, 150 km/s outflow (inspiral) followed by a
fast explosive outflow (final core merger).

Stage |l is the inspiral.

L2 mass loss makes a dense and slow100 km/s
disk/torus (see Pejcha +16 model V1309 Sco).

« Light curve peaks are periastron passes of the
5.5 yr eccentric companion.

Stage Il is the explosion and CSM interaction.

Like a Type IIn SN, but 1e50 ergs.

« Strengthening/broadening 600 km/s emission
lines are post-shock gas getting accelerated.

« 10,000 km/s wings are explosive ejecta hitting
reverse shock. Shock breakout from merger
energy deposition inside common envelope.

Phase |
(1830s/1840s)

150-200 km/s outflow = Vg at 5-6 AU

Inspiral, L2 mass loss,
toroidal envelope ejection

shock
heating

slow
equatorial
outflow

Phase
(1850s) o~

st
forward
shock

L.

- -
-

10*km/s
explosive
outflow

L

Merger, explosive outflow,
strong CSM interaction

150 km/s
equatorial
outflow

600 km/s
post-shock shell
(Homunculus walls)

(Broad Ha wings from fastest ejecta reaching reverse shock)




Many (most?) LBVs/SN impostors may be merger events.

JE ) L B P R e e B o 2 o e TER P ) R e TR P T R D ) P D PR I P e JED PR ) o B e T

A stellar merger model might
help unify a range of non-SN
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duration may arise from range
of stellar mass, mass ratio,
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Also, environments require
that LBVS are massive blue
stragglers, not massive single
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Repeating LBV eruptions / SN impostors
Non-SN transients with repeating quasi-periodic
eruptions. Peak My ~ -13 to -15 mag.

SN 2000ch (~60 M)
erupts with 201 d period

(Aghakhanloo +23a, Pastorello et al. 2010)

AT2016blu (>33 M)

erupts with 113 d quasi-period

(Aghakhanloo +23b)

(a) quiescent ___.-
BV

°
orbiting‘x\
companion ..

Companion could
be star or compact

ObJeCt (b) outburst et
LBV

See
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orbiting .
companion .

by Soker & Kashi
(accretion models)
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Repeating LBV eruptions / SN impostors
Non-SN transients with repeating quasi-periodic 30

eruptions. Peak My ~ -13 to -15 mag.

SN 2000ch (~60 M) 2.5
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These periodic LBV-like eruptions are VERY 00 g c 4506 35 4 6 8

similar to the progenitor outbursts of SN2009ip. Velocity (103 km/s)



SN 2009ip:a non-SN in 2009, exploded as a SN in 2012) |*"**" "

2009 transient was an eruption of a massive star, not a SN (Smith et al.
2010). But then it exploded as a SN in 2012 while we were watching!

Repeating progenitor LBV-like eruptions were very fast/brief and had
spectra like SN 2000ch (Smith+10, Mauerhan+13, Pastorello+13)
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CSM INTERACTION DIVERSITY T
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SNe lIn lightcurves — diversity
in L and duration
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Huge range of CSM interaction
luminosity, from SLSNe lIn where CSM
interaction completely dominates,

down to cases where there is almost no
CSM interaction or it makes a minor
addition to L, or just narrow lines as |
Flash SNe.
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Diversity of CSM interaction for SNe
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and its radial distribution. Important
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CSM INTERACTION DIVERSITY

SNe lIn spectra

1. narrow (< 1000 km/s) pre-shock CSM

2. intermediate-width (1000-3000 km/s) from
shocked CSM (or e- scattering at early times).

3. Broad (~3,000-15,000 km/s) components at
some phases (especially late) from reverse shock
or SN ejecta. Broad Ha = H-rich SN ejecta.

Inferred CSM mass and progenitor Mdot values
are HUGE.

1 5 1V
=—wV, =—MX
2 N 2V

Generally, if CSM is detectable at visual
wavelengths, required mass-loss rates are
higher than any normal winds.

Basic Picture - Type IIn or Ibn

CSM
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CSM INTERACTION DIVERSITY

COMPARE:

Mdot and V,
inferred for
interacting SNe to
those of various
types of stars
(from Smith 2014
review).

Average mass—loss rate (log Mg yr™})
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Figure from
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CSM INTERACTION DIVERSITY

DUST

High density CSM leads to radiative
cooling of post-shock layer. It forms
a cold dense shell (CDS).

This appears to trigger rapid dust
formation in the post-shock gas.

Blueshifted line profiles (dust blocks
far side) and IR excess seen in many
SNe lIn — especially SLSNe lIn.

plus lots of new results from dust
formation in SNe lIn coming from
JWST (Melissa Shabande’s talk...

oops, talk was cancelled.)

neutral or ionized

M >0.01 Ma/yr

<7 Y

Basic Picture - Type IIn or Ibn
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 fast ejecta

SN ejecta

SN 2015da

swept-up post-shock
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Side view: Viewing Point A /\ Viewing Point A Edge-on with distant echo:
Distant CSM:

Weak narrow Balmer emission/absorption

Light echo with wavelength-dependent
e ———— polarization
Distance to CSM shellsmayvary ~ aeestttt T
Number of CSM shells mayvary ~eestt" T ID=?
CSM shells may project anywhere 5 =

a 3-dimensional shell 4

CSM Asymmetry: from specpol... '

Viewing Point B

" |Bright oblate CSM
* | Wavelength-dependent polarization from light echo

Chris Bilinski PhD thesis (2024, MNRAS, 529, 1104) € : f’ P S —

during main peak is ~2% (that’s high).
Only about 30% of SNe lIn have
low/undetectable polarization below 1%.

* In sample of SNe lIn, typical polarization .

Broad (Lorentzian) polarized line emission Roughly toroidal (circularly symmetric) CSM
Continuum photosphere (electron scattering region) Wavelength-dependent polarization from light echo
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P S " disk/torus... then with random
%3t . viewing angles, about 30% will
LN 4 ® sN2otico be viewed from 45° to the pole
ol *  SN19s7eg |- (face on, low %P).
3 X SN1998S
5 X SN2010jl . .
St *  snzo0sp | This suggests that highly
2oz e asymmetric CSM is the norm.
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CSM INTERACTION DIVERSITY

Potential mechanisms to produce the outbursts and/or CSM. How well
do they match SN lIn properties and diversity?

Pulsational Pair Instability: way too rare; almost none match expectations
(Woosley 2017; Heger & Woosley 02; Renzo+20; Renzo & Smith 2025)
8-11 My (ecSNe, degenerate flashes, etc.): limited to low-mass, low-E
explosions. Crab maybe; can’t explain majority of interacting SNe.
(Woosley & Heger 2015; Nomoto 84,97; Arnett 1979)
Wave driving: Limited to 1 yr before CC. Very weak mass loss if it works.
Cannot explain CSM in vast majority of interacting SNe IIn (>1 yr).
(Quataert & Shiode12, SQ14, Fuller17, Wu&F21,22)
Other late burning instabilities: most known instabilities are also during O
burning (same problem as wave driving = 1yr). 3D - needs more study.
(Smith & Arnett 2014; Arnett & Meakin 2011)
Pre-SN Binary Interaction: works in principle — asymmetry, velocities, wide
range of stellar and CSM mass, massive stars are mostly in binaries. May be

triggered by late inflation of star or merger with compact object.
(Smith & Arnett 2014; Smith+24; Chevalier 2012, Schroder+20)

Short version: None of these actually work to explain
SNe lIn, except maybe pre-SN binary interaction.

no global asymmetry expected






CSM INTERACTION DIVERSITY

Potential mechanisms to produce the outbursts and/or CSM. How well
do they match SN IIn properties and diversity?

Pulsational Pair Instability: way too rare; almost none match expectations

8-11 My, (ecSNe, degenerate flashes, etc.): limited to low-mass, low-E
explosions. Crab maybe; not most interacting SNe.

Wave driving: Limited to 1 yr before CC. Very weak mass loss if it works.
Cannot explain CSM in vast majority of interacting SNe (>1 yr).

Other late burning instabilities: most known instabilities are during O
burning (same problem as wave driving = 1yr). 3D - needs more study.

Pre-SN Binary Interaction: works in principle — asymmetry, wide range of
mass, massive stars are in binaries. But why synchronlzed with CC?



{EruptionlExplosion mechanisms}

Pulsational Pair Instability (Woosley17, HW02, Renzo+20)

Pros:

Was actually predicted before SLSNe lIn became a hot topic.

Can make high-L, long-duration, interaction-powered events with wide
diversity in observed properties (Woosley 2017, Renzo+20)

Gives a good explanation for SN 1961V (Woosley & Smith 2022)

Cons:

Should be very rare (because of IMF) — not enough for most SNe lIn
Exclusively high mass - can’t match wide progenitor mass range of SNe lIn
velocities don’t match most observed SNe lIn at all

(too fast for CSM, too slow for ejecta)
First pulse removes any H envelope, so faster ejecta in 2nd pulse should be
H-poor (doesn’t match most SNe |In that show broad Ha)
First pulse is the most energetic (so if a SN IIn looks like a smaller pre-SN
outburst followed by what looks like a ccSN, it aint a p-PISN)
No reason to expect strongly asymmetric CSM



CSM INTERACTION DIVERSITY
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H-poor (doesn’t match most SNe IIn that sho i ke

» First pulse is the most energetic (so if a SN lIn Mass (solar mosses) Woosley & Smith 22
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outburst followed by what looks like a ccSN, it aint a p-PISN)
* No reason to expect strongly asymmetric CSM



{EruptionlExplosion mechanisms}

degenerate flashes 8-11 My (ecSNe or whatever) (WoosleyHeger15, Nomoto84/87 etc.)

Pros:

« Expect dense H-rich CSM (sAGB wind or ejected by flashes)

* Gives a good explanation for SNe |In-P or other events (Crab) with low
explosion energy, low initial masses, low °°Ni masses, but high L

» Maybe not super-rare because of IMF

Cons:

« Can’t explain high-mass CSM, high progenitor masses

« Can't explain high explosion energy needed for many SNe lIn

« Can't explain any of the luminous or super-luminous SNe lIn, or long-lasting
events (like 88Z) — CSM mass budget is not high enough

* No reason to expect asymmetric CSM



{EruptionlExplosion mechanisms}

Wave driving (Quataert & Shiode12, SQ14, Fuller17, Wu&F21,22)

Pros:

» Natural outcome of last pre-SN burning phases

« Might give a good explanation for some short-duration events (brief inflation
or puff of mass loss right before core collapse)

« Timescale matches some observed pre-SN outbursts (09ip, 06jc...)

» Large diversity of energy injection

Cons:

* Only works for ~1 yr before core-collapse or less; not viable to explain the
vast majority of SNe IIn and SLSNe lIn (where strong mass loss lasts
several years/decades/centuries before core collapse).

» Total wave energy = 1e46-1e47 erg (few years before)

or 1e47-1e48 erg (few days before)

« Can it give an explosive ejection of large CSM mass?

* No reason to expect asymmetric CSM

> almost enough E, but too late



CSM INTERACTION DIVERSITY

Wave driving (Quataert & Shiode12, SQ14, Fuller17, Wu&F21,22)
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Time til Core Collapse (years)

Wu & Fuller 21



Eruption/Explosion mechanisms

Unsteady late nuclear burning (see Smith & Arnett 2014)

Pros:

 Instabilities in 3D turbulent convection simulations of late burning phases
claimed to trigger outbursts (Meakin & Arnett ‘07, Amett & Meakin “11a, “11b,
Arnett+10,+14)

» Plenty of energy available, in principle, from mixing fresh fuel into deeper

layer.
» Large diversity of energy injection

Cons:
* Not enough work done on this phenomenon — what happens to envelope?

Predicted observables?
» Like wave driving, probably most likely during Ne, O, Si burning... probably
too late for most SNe lIn



{EruptionlExplosion mechanisms}

Pre-SN Binary Interaction, RLOF, merger, common envelope (Smith & Arnett 2014)

Pros:

Majority of massive stars are in binaries or triples or more.

Expected to happen anyway as all stars swell (some fraction of binaries will be
caught interacting with wide companion in 10-104 yr before core collapse) and also
naturally explains delayed-onset CSM interaction (14C, etc.).

Might be synchronized with core collapse because any of the previous (esp. wave
driving) might inflate the envelope shortly before core collapse to trigger pre-SN
mass loss

Pre-SN merger can drive even the most extreme CSM of SLSNe lIn

Works across all initial masses, not just high or low

May also work with compact (NS/BH) companions (Fryer+98,Chevalier12,Schroeder+20)
Favors Type Il because H envelopes are big

Slow CSM (RLOF during inspiral phase) with diverse properties

Only mechanism that obviously predicts strong axisymmetry in CSM

Cons:

it is cheating to invoke them (?).
need more theoretical work on mergers (esp. NS/BH+star)



Eruption/Explosion mechanisms

Pre-SN Binary Interaction, RLOF, merger, common envelope (Smith & Arnett 2014)

Pros:

Majority of massive stars are in binaries or triples or more.

Expected to happen anyway as all stars swell (some fraction of binaries will be
caught interacting with wide companion in 10-104 yr before core collapse) and also
naturally explains delayed-onset CSM interaction (14C, etc.).

Might be synchronized with core collapse because any of the previous (esp. wave
driving) might inflate the envelope shortly beffRleiNellzzeg

mass loss Why would you have a common envelope/merger right

I bef SN? Th th hts:
Pre-SN merger can drive even the most extrdie ree thoughts
Works across all initial masses, not just high R ettty

times (weighted toward end b/c of larger R), and some

May aISO Work With com pact (NS/BH) Compa fraction happen to explode during or soon after )

common envelope phase. Should be distant shells

Favors Type Il because H envelopes are big EEECTERERTHEISNS
Slow CSM (RLOF during inSpiraI phase) Willg] 2. Merger triggers an explosion: Maybe a merger with a

compact object can do this. Needs more theoretical

Only mechanism that obviously predicts strorjess

. Late nuclear burning instabilities cause star to swell

COnS o before SN, which causes the merger to happen.

it is cheating to invoke them (?).
need more theoretical work on mergers (esp. NS/BH+star)



