**Swiss National
Science Foundation**

Orbital stability of circumbinary exoplanets orbiting double white dwarfs

Arianna Nigioni Observatoire de Geneve arianna.nigioni@unige.ch Florence, CBP workshop

January 14-17th 2025

Double White Dwarf (DWD)

Gravitational wave signal

Laser Interferometer Space Antenna (LISA) [Credits: Amaro-Seoane et al. 2017]

Science case

Can we form them? Yes! [Ledda et al. 2023]

Can we detect them?

Yes! [Tamanini & Danielski 2019] The gravitational wave signal is periodically modulated by the planet if $0.2 M_{I} < M_{D} < 13 M_{I}$

Double White Dwarf (DWD)

Can they survive during the evolutionary phase? [Nigioni A., Turrini D., Danielski C., Chambers J.E. under review]

Laser Interferometer Space Antenna (LISA) [Credits: Amaro-Seoane et al. 2017]

Science case

Can we form them? Yes! [Ledda et al. 2023]

hielski 2019]

The gravitational wave signal is periodically modulated by the planet if $0.2 M_1 < M_p < 13 M_1$

Symplectic integrators *[Wisdom & Holman 1991]* Short execution times Small energy variation Adaptation to the possibility of having close-encounters (Hybrid symplectic integrator) *[Chambers 1999]* dominant term $+$ $\left\{ \begin{array}{c} \text{dominant term} \\ + \text{perturbation term} \end{array} \right.$ Adaptation to presence of a secondary star (P-type binary coordinates) *[Chambers et al. 2002]* $H =$ + 1. Advance $H_{\text{P,int}}$ for $\tau/2$; 2. Repeat the following N_{bin} times: Advance $H_{\text{B,int}}$ for $\tau/(2N_{\text{bin}})$; Advance $H_{\text{B,Kep}}$ for τ /(2 N_{bin}); 3. Advance H_{jump} for $\tau/2$; 4. Advance *H*_{P,Kep} for *τ*;

N-body problems in P-type binaries

Our systems' Hamiltonian in P-type binary coordinates

 $H_{Kep} = H_{P,Kep} + H_{B,Kep}$ $H_{\text{int}} = H_{\text{P,int}} + H_{\text{B,int}}$ & H_{jump}

Integration scheme

5. Advance H_{jump} for $\tau/2$;

 $N_{\text{bin}} \simeq T_{\text{innermost planet}}/T_{\text{bin}}$

Initial conditions

Binary

Eccentricity is zero *[Ledda et al. 2023]*, inclination set to zero for simplicity, phase angles sampled randomly

Number	$2 \le N_s \le 4$		
Mass	$[0.4, 0.5] M_J$	$[2.5, 15] M_J$	$[0.12, 1.2] M_J$
5emi-major axis	$a_{crit} \le a \le a_{(P=8 \text{ yr})}$	Mass ranges from [Ledda et al. 2023]	
Eccentricity	$0 \le e \le 0.01$	ranges from runing of a line line at al. 2019 & 2021	
Inclination	$1^\circ \le i \le 3^\circ$	100 simulations for each DW system	

The systems marked with the ∗ belong to the LISA DWD population presented in [*Korol et al. 2019]*.

Metrics to analyse and compare planetary systems

e Normalized Angular Momentum Deficit
 $NAMD = \frac{AMD}{CAM} = \frac{\sum_k m_k \sqrt{a_k} (1 - \sqrt{1 - e_k^2} \cos i_k)}{\sum_k m_k \sqrt{a_k}}$

๏ Orbital Spacing Statistics

 $S_s = \frac{6}{N-1} \left(\frac{a_{\max} - a_{\min}}{a_{\max} + a_{\min}} \right) \left(\frac{3M_{\min}}{2\bar{m}} \right)^{1/4}$

Fraction of total mass retained in the largest of the state of total mass retained in the largest

e Planetary centre of mass $COM = \frac{\sum_{i}^{T} P_{i}}{\sum_{i}^{T}}$

Threshold value: 1.3×10^{-3} Distinguish between dynamically COLD and HOT planetary system

[Chambers 2001; Turrini et al. 2021]

$$
\boxed{-\,e_k^2\cos i_k}
$$

where
$$
N > 1
$$
 \longrightarrow S_s^f / S_s^s
\n**argest object** $S_m = \frac{M_{\text{most massive}}}{\sum_i^N m_i} \longrightarrow S_n^f$
\n $\frac{N}{i} m_i a_i \longrightarrow \Delta_{\text{COM}}$

We identify two populations:

Results (1/5)

- Population A: $M_p^i \le 1.2$ M_J and orbit a binary with mass $M_{\text{bin}} < 0.6$ M_{\odot} . Corresponds to DWD₂ and DWD^{*}₄ **•** Population B: M_p^i ≥ 2.5 M_J and orbit a binary with mass $M_{\text{bin}} \sim 1$ M_{\odot} . Corresponds to DWD^{*}₃ \sum_{2}^{*}
- We define catastrophic events as:
-
- ๏ Single catastrophic events: ejections, planet-planet collisions, close approach to the binary ๏ Multiple catastrophic events: combination of the above

Does the dynamical evolution depend on the initial multiplicity N_s **?**

Arianna Nigioni — CBP workshop — Florence, January 14-17th 2024

Results (2/5)

- Population A corresponds to DWD₂ and DWD^{*}4
- ๏ Population B corresponds to DWD3 *****

Results (3/5)

Population A

Arianna Nigioni — CBP workshop — Florence, January 14-17th 2024

๏More systems end up with one surviving planet (i.e., $S_s^f/S_s^s = 0$) $= 0$

Results (4/5)

 0.2 $8 0.1$ 0.0 $6 -$ ACOM [au] -0.1 $\frac{1}{2}$ -0.2 $\left[-0.3 \frac{1}{0.94 \ 0.97 \ 1.00}\right]$ 1.04 1.08 $\overline{2}$ $0 \cdot$ 2.5 3.5 3.0 0.0 0.5 1.5 2.0 1.0 S_{S}^{f}/S_{S}^{s}

Population B

๏Larger Δ COM |

๏Some dynamically hot systems keep their initial orbital configuration

Same trends as population A but:

Detectability with LISA ?

Following the results by *Katz et al. (2022)* some of our single planet systems have the potential to be detected, pending though the distance of the systems, their skylocation, polarisation and inclination, which determine the GW signal-to-noise *[Robson et al. 2018]*.

Summary

- ๏ Multi-giant planet systems can survive around Double White Dwarf systems \rightarrow 97% of all our simulated systems have at least one surviving planet
- ๏ More massive binaries hosting more massive planets are more likely to go through unstable phases compared to the less massive counterpart
- ๏ Dynamically hot systems tend to loose planets and evolve towards less compact architectures and can experience large shifts of the planetary centre of mass (up to ~ 8 au)
- ๏ Dynamically cold systems preserve their initial architecture
- ๏ Systems with initial higher multiplicity are more likely to undergo unstable phases and experience planet loss
	- \rightarrow Creation of a one-planet population (3%) and most of these planets have the potential of being detected by LISA
- ๏ Our multi-planet systems are unlikely to be detectable by LISA