Swiss National Science Foundation

Orbital stability of circumbinary exoplanets orbiting double white dwarfs

Arianna Nigioni Observatoire de Geneve ∑arianna.nigioni@unige.ch

Florence, CBP workshop January 14–17th 2025

Double White Dwarf (DWD)

Gravitational wave signal

Laser Interferometer Space Antenna (LISA)

[Credits: Amaro-Seoane et al. 2017]

Science case

Can we form them ? **Yes** ! *[Ledda et al. 2023]*

Can we detect them ?

Yes! [Tamanini & Danielski 2019] The gravitational wave signal is periodically modulated by the planet if 0.2 $M_I < M_p < 13 M_I$

Double White Dwarf (DWD)

Can they survive during the evolutionary phase? [Nigioni A., Turrini D., Danielski C., Chambers J.E. under review]

Laser Interferometer Space Antenna (LISA) [Credits: Amaro-Seoane et al. 2017]

Science case

Can we form them ? **Yes** ! *[Ledda et al. 2023]*

nielski 2019]

The gravitational wave signal is periodically modulated by the planet if $0.2 M_I < M_p < 13 M_I$

Short execution times Small energy variation Symplectic integrators [Wisdom & Holman 1991] Adaptation to the possibility of having close-encounters (Hybrid symplectic integrator) [Chambers 1999] 3. Adaptation to presence of a secondary star (P-type binary coordinates) [Chambers et al. 2002]

N-body problems in P-type binaries

Our systems' Hamiltonian in P-type binary coordinates

 $H = \begin{cases} \text{dominant term} \longrightarrow H_{\text{Kep}} = H_{\text{P,Kep}} + H_{\text{B,Kep}} \\ + \\ \text{perturbation term} \longrightarrow H_{\text{int}} = H_{\text{P,int}} + H_{\text{B,int}} \& H_{\text{jump}} \end{cases}$

Integration scheme

Advance $H_{\text{P,int}}$ for $\tau/2$; Repeat the following $N_{\rm bin}$ times: Advance $H_{\text{B,int}}$ for $\tau/(2N_{\text{bin}})$; Advance $H_{\rm B,Kep}$ for $\tau/(2N_{\rm bin})$; Advance H_{jump} for $\tau/2$; Advance $H_{P,Kep}$ for τ ;

Advance H_{jump} for $\tau/2$;

6.	Repeat the following N_{bin} times
	Advance
	$H_{\text{B,int}}$ for $\tau/(2N_{\text{bin}})$;
	Advance
	$H_{\rm B,Kep}$ for $\tau/(2N_{\rm bin})$;
7.	Advance $H_{P,int}$ for $\tau/2$.

 $N_{\rm bin} \simeq T_{\rm innermost \ planet}/T_{\rm bin}$

Binary

system	$M_1 [M_\odot]$	$M_2 [M_\odot]$	$P_{\rm bin}$ []
DWD ₂	0.31	0.21	0.43
DWD ₃ *	0.75	0.26	1.51
$_{\rm DWD_4^{\tilde{*}}}$	0.31	0.25	1.71

The systems marked with the * belong to the LISA DWD population presented in [Korol et al. 2019].

Initial conditions

Eccentricity is zero [Ledda et al. 2023], inclination set to zero for simplicity, phase angles sampled randomly

$$2 \le N_s \le 4$$

$$[0.4,0.5] M_J - [2.5,15] M_J - [0.12,1.2]$$

$$DWD_2 DWD_3^* DWD_4^*$$

$$a_{crit} \le a \le a_{(P=8 \text{ yr})}$$

$$Mass \text{ ranges from}$$

$$[Ledda \text{ et al. 2023}]$$

$$Eccentricity and inclination ranges from [Gong and Junch of Compared on Mass for each system]$$

$$1^{\circ} \le i \le 3^{\circ}$$

$$100 \text{ simulations for each system}$$

Normalized Angular Momentum Deficit $\text{NAMD} = \frac{\text{AMD}}{\text{CAM}} = \frac{\sum_{k} m_k \sqrt{a_k} \left(1 - \sqrt{1 - a_k}\right)}{\sum_{k} m_k \sqrt{a_k}}$

Threshold value: 1.3×10^{-3}

Orbital Spacing Statistics

 $S_s = \frac{6}{N-1} \left(\frac{a_{\max} - a_{\min}}{a_{\max} + a_{\min}} \right) \left(\frac{3M_{\min}}{2\bar{m}} \right)^{1/2}$

Fraction of total mass retained in the la

• Planetary centre of mass $COM = \frac{\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=$

Metrics to analyse and compare planetary systems

[Chambers 2001; Turrini et al. 2021]

$$-e_k^2\cos i_k$$

Distinguish between dynamically COLD and HOT planetary system

where
$$N > 1 \longrightarrow S_s^f / S_s^s$$

argest object $S_m = \frac{M_{\text{most massive}}}{\sum_i^N m_i} \longrightarrow S_n^f$
 $\sum_i^N m_i$

We identify two populations:

- Population A: $M_p^i \le 1.2 M_J$ and orbit a binary with mass $M_{bin} < 0.6 M_{\odot}$. Corresponds to DWD₂ and DWD^{*}₄ • Population B: $M_p^i \ge 2.5 M_J$ and orbit a binary with mass $M_{\text{bin}} \sim 1 M_{\odot}$. Corresponds to DWD^{*}₃
- We define catastrophic events as:
- Single catastrophic events: ejections, planet-planet collisions, close approach to the binary
- Multiple catastrophic events: combination of the above

Results (1/5)

Does the dynamical evolution depend on the initial multiplicity N_s ?

Population A				Population A		
$N_s = 4$		$N_s = 2$	$N_s = 3$	N_s		
58%	No catastrophic events	100%	97%	5		
100	Ejections only	0%	2%	2		
42%	Collisions _{p-p} only	0%	1%	7		
0% 0% Multiple catastrophic events		0%	0%	7		
	Population B					
$N_s = 4$		$N_s = 2$	$N_s = 3$	N_s		
13%	No catastrophic events	100%	81%	5		
	Ejections only	0%	2%	1		
65%	Collisions _{p-p} only	0%	4%	2		
22%	Multiple catastrophic events	0%	13%	2		
	$N_s = 4$ 58% 42% 0% N _s = 4 13% 65% 22%	$N_s = 4$ No catastrophic events58%Ejections only42%Collisions _{p-p} only0%Multiple catastrophic events $N_s = 4$ No catastrophic events13%Ejections only65%Collisions _{p-p} only22%Multiple catastrophic events	$N_s = 4$ Population A $N_s = 4$ $N_s = 2$ 58%No catastrophic events100%42%Collisions _{p-p} only0%0%Multiple catastrophic events0% $N_s = 4$ $N_s = 2$ 13%Ejections only0%65%Collisions _{p-p} only0%22%Multiple catastrophic events0%	Population A $N_s = 4$ $N_s = 2$ $N_s = 3$ 58%100%97%42%0%2%Collisions _{p-p} only0%1%0%Multiple catastrophic events0% $N_s = 4$ No catastrophic events0% $N_s = 4$ No catastrophic events100%13%Ejections only0%2%Collisions _{p-p} only0%2%Collisions _{p-p} only0%2%Multiple catastrophic events100%81%Ejections only0%2%Collisions _{p-p} only0%4%Multiple catastrophic events0%13%		

		$N_s = 2$	$N_s = 3$	$N_s = 4$
N_s is the initial	DWD ₂	32%	48%	20%
number of planets	DWD ₃ *	29%	48%	23%
	$DWD_4^{\tilde{*}}$	31%	36%	33%

Results (2/5)

- Population A corresponds to DWD_2 and DWD_4^*
- Population B corresponds to DWD_3^*

Population A

Results (3/5)

Population B

Same trends as population A but:

• More systems end up with one surviving planet (i.e., $S_{s}^{f}/S_{s}^{s} = 0$)

Results (4/5)

0.2 8 -0.1 0.0 6 -Δ_{COM} [au] Գ -0.1 -0.2 -0.3 0.94 0.97 1.00 1.04 1.08 2 0 2.5 3.5 3.0 0.0 0.5 1.5 2.0 1.0 S_s^f/S_s^s

- Larger ΔCOM
- Some dynamically hot systems keep their initial orbital configuration

Arianna Nigioni — CBP workshop — Florence, January 14-17th 2024

Detectability with LISA ?

Following the results by *Katz et al. (2022)* some of our single planet systems have the potential to be detected, pending though the distance of the systems, their sky-location, polarisation and inclination, which determine the GW signal-to-noise *[Robson et al. 2018]*.

- Multi-giant planet systems can survive around Double White Dwarf systems \rightarrow 97% of all our simulated systems have at least one surviving planet
- More massive binaries hosting more massive planets are more likely to go through unstable phases compared to the less massive counterpart
- Dynamically hot systems tend to loose planets and evolve towards less compact architectures and can experience large shifts of the planetary centre of mass (up to ~ 8 au)
- Dynamically cold systems preserve their initial architecture
- Systems with initial higher multiplicity are more likely to undergo unstable phases and experience planet loss
 - \rightarrow Creation of a one-planet population (3%) and most of these planets have the potential of being detected by LISA
- Our multi-planet systems are unlikely to be detectable by LISA

Summary

