LONG-TERM EVOLUTION OF CIRCUMBINARY PLANETS

AND ANALYSIS OF THEIR DISTRIBUTIONS

Gabriele Columba,

C. Danielski, A. Doroszmai, S. Toonen, A. Claret, M. Lopez Puertas

CIRCUMBINARY PLANETS IN CONTEXT

Most of currently detected exoplanets revolve around **main sequence** (MS) and **single** stars.

CIRCUMBINARY PLANETS IN CONTEXT

Most of currently detected exoplanets revolve around **main sequence** (MS) and **single** stars.

Multiple stars are the rule, not the exception!

(Kouwenhoven et al. 2007; Raghavan et al. 2010; Duchene & Kraus 2013; Moe & Di Stefano 2017, and more)

CIRCUMBINARY PLANETS: NUMBERS

To date, over the 5800* exoplanets discovered, only around 48* are CBPs: **0.8%** ! (and 530 in total are part of multiple hosts, around 10%)

CBPs discovered through different methods:

Eclipse Timing Variations	Transits	Imaging	Microlensing	Radial Velocity
~ 35%	~ 30%	~ 19%	$\sim 10\%$	~ 4%

*according to the NASA Exoplanet Archive, other sources might have differing numbers.

CIRCUMBINARY PLANETS: NUMBERS

To date, over the 5800* exoplanets discovered, only around 48* are CBPs: **0.8%** ! (and 530 in total are part of multiple hosts, around 10%)

CBPs discovered through different methods:

Eclipse Timing Variations	Transits	Imaging	Microlensing	Radial Velocity
~ 35%	~ 30%	~ 19%	~ 10%	~ 4%

CBPs showcase intriguing binary host stars:

- 14 CBPs orbit at least one post-MS star (e.g. Kepler-451, Esmer et al. 2022, HW Vir, Beuermann et al. 2012, or NY Vir, Song et al. 2019)
- 7 of these 14 orbit a binary with a white dwarf (WD, for example RR Cae, Qian et al. 2012, UZ For, Potter et al. 2011, or NN Ser, Beuermann et al. 2010)

*according to the NASA Exoplanet Archive, other sources might have differing numbers.

CIRCUMBINARY PLANETS: LET'S GO?

If CBPs are not preferentially coplanar, they could be very abundant (Armstrong at al 2014)

Favourable environment for their long-term **survival**? (Kostov et al. 2016)

CBPs showcase intriguing binary host stars:

- 14 CBPs orbit at least one post-MS star (e.g. Kepler-451, Esmer et al. 2022, HW Vir, Beuermann et al. 2012, or NY Vir, Song et al. 2019)
- 7 of these 14 orbit a binary with a white dwarf (WD, for example RR Cae, Qian et al. 2012, UZ For, Potter et al. 2011, or NN Ser, Beuermann et al. 2010)

CIRCUMBINARY PLANETS EVOLUTION

Motivation:

- Limited sample size of detected CBPs
- Most planetary systems in general are around <u>main sequence</u> stars
- > Possibility of CBPs detection with future <u>LISA</u> mission

CIRCUMBINARY PLANETS EVOLUTION

Motivation:

Columba+(2023)

- Limited sample size of detected CBPs
- Most planetary systems in general are around <u>main sequence</u> stars
- > Possibility of CBPs detection with future <u>LISA</u> mission

Goals:

- > Assess the fate of CBPs in the context of the binary host evolution
- Characterise the parameter space and properties of the CBPs population in time

Project: Numerical simulations of circumbinary giant planets long-term evolution

Columba+(2023)

THE SIMULATION FRAMEWORK

Codes:

- **TRES** (Toonen 2016), to simulate three-body systems
- > SeBa (Toonen & Nelemans 2013), to include stellar evolution

Numerical code for hierarchical triples, combining secular orbital evolution, with stellar evolution and interactions via heuristic recipes.

Columba+(2023)

THE SIMULATION FRAMEWORK

Codes:

- TRES (Toonen 2016), to simulate three-body systems
- > SeBa (Toonen & Nelemans 2013), to include stellar evolution

Methods:

- Review of planet-binary star interactions
- Implementation of new modules into TRES code
- Secular simulation of <u>CBPs populations</u> up to 13.5 Gyr

NEW IMPLEMENTATIONS

Mass-radius dependence for SSOs (Chen&Kipping2017)

Planetary photoevaporation by XUV (e.g. Sanz-Forcada+2011)

P-type orbit stability criterion (Holman&Wiegert1999)

Planetary rotational velocity (Bryan+2018)

Gyration radius and the *apsidal motion constant*, evolving from ZAMS to WD (Claret+2019)

TRES-exo (Columba+2023)

included within the main TRES package

On GitHub!

POPULATIONS SETUP

Inner binaries

<i>M</i> ₁ : Kroupa IMF	$[0.95-10]~\mathrm{M}_{\odot}$
M_2 : uniform $\left(\frac{M_2}{M_1}\right)$	$[0.95-10]~\mathrm{M}_{\odot}$
a_{bin} : log-uniform	[0.07 – 10] au
$e_{\rm bin}$: thermal	[0 - 0.95]

Progenitors to match the Milky Way DWDs population (Toonen+2012)

POPULATIONS SETUP

Inner binaries

M ₁ : Kroupa IMF	$\left[0.95-10 ight]{ m M}_{\odot}$
M_2 : uniform $\left(\frac{M_2}{M_1}\right)$	$[0.95-10]~\mathrm{M}_{\odot}$
a_{bin} : log-uniform	[0.07 – 10] au
$e_{\rm bin}$: thermal	[0 - 0.95]

Giant CBPs

Pop. A:

M _{pl} :	uniform $[0.2 - 16] M_{Jup}$
$a_{ m pl}$:	log-uniform [0.17 – 200] au
i pl:	\cos -uniform $[-1; 1]$
e _{pl} :	Beta (α=30,β=200)[0 - 0.95] (Bowler+2020)

Progenitors to match the Milky Way DWDs population (Toonen+2012)

POPULATIONS SETUP

Inner binaries

M ₁ : Kroupa IMF	$\left[0.95-10 ight]\mathrm{M}_{\odot}$
M_2 : uniform $\left(\frac{M_2}{M_1}\right)$	$[0.95-10]~\mathrm{M}_{\odot}$
a _{bin} : log-uniform	[0.07 – 10] au
e _{bin} : thermal	[0 - 0.95]

Progenitors to match the Milky Way

DWDs population (Toonen+2012)

Giant CBPs

Pop. A:

M _{pl} :	uniform $[0.2 - 16] M_{Jup}$
$a_{\rm pl}$:	log-uniform [0.17 – 200] au
<i>i</i> _{pl} :	cos-uniform [-1;1]
<i>e</i> _{pl} :	Beta (α=30,β=200)[0 - 0.95] (Bowler+2020)

Pop. B:

All simple **uniform** distributions, same ranges (10500 systems per population)

$$\sum_{t_{end} \leq 13.5 \text{ Gyn}} t_{end} \leq 13.5 \text{ Gyn}$$

The simulated CBPs were grouped in different categories based on their final fate.

Special focus on CBPs surviving to the WD stage of both stars: "Magrathea"

LISA mission will have the sensitivity necessary to detect gas giants and brown dwarfs around DWDs *in the entire Milky Way* (Tamanini & Danielski 2019; Danielski et al. 2019)

Pop A + B

Occurrence rate $\sim 23 - 32\%$

Pop A + B

Occurrence rate $\sim 23 - 32\%$

Large CBP semimajor axes

ROOM FOR WIGGLE

The Magratheas are selected after 13.5 Gyr exactly. DWD "survivors" can increase for shorter time limits.

INCLINATION PREFERENCE

Surviving CBPs are preferentially found on prograde orbits, but inclined!

RESULTS: PHOTOEVAPORATION

- Photoevaporation significant for a few individual CBPs
- Stronger loss around low/intermediate mass binaries

RESULTS: STABILITY

- > No particular pile-up of CBPs at the stability limit, but two bumps in the log-distribution
- > Destabilised systems have wider binaries and CBPs closer to the a_crit (= a_pl / a_bin)

RESULTS: TABLES

The simulated CBPs were grouped in different categories based on their final fate.

	Population A	Population B
Magrathea	23.21%	32.10%
Collided	3.18%	2.11%
Destabilised	0.26%	0.17%
Merged	31.70%	35.10%
Stable-MT	16.94%	17.08%
CPU-limited	12.01%	2.47%
Ordinaries	10.70%	10.71%

RESULTS: TABLES

The simulated CBPs were grouped in different categories based on their final fate.

	Population A	Population B
Magrathea	23.21%	32.10%
Collided	3.18%	2.11%
Destabilised	0.26%	0.17%
Merged	31.70%	35.10%
Stable-MT	16.94%	17.08%
CPU-limited	12.01%	2.47%
Ordinaries	10.70%	10.71%

$P < 10 \mathrm{yr}$		$P < 50 \mathrm{yr}$	
Pop. A	Pop. B	Pop. A	Pop. B
0.00%	0.00%	0.08%	0.03%
69.46%	9.91%	92.51%	25.68%
59.26%	11.11%	77.78%	16.67%
8.05%	0.33%	20.55%	2.88%
26.42%	1.95%	46.32%	7.81%
72.40%	19.31%	92.15%	45.56%
12.73%	1.07%	31.26%	4.80%
	P < Pop. A 0.00% 69.46% 59.26% 8.05% 26.42% 72.40% 12.73%	P < 10 yrPop. APop. B $0.00%$ $0.00%$ $69.46%$ $9.91%$ $59.26%$ $11.11%$ $8.05%$ $0.33%$ $26.42%$ $1.95%$ $72.40%$ $19.31%$ $12.73%$ $1.07%$	P < 10 yr $P < 5$ Pop. APop. BPop. A0.00%0.00%0.08%69.46%9.91%92.51%59.26%11.11%77.78%8.05%0.33%20.55%26.42%1.95%46.32%72.40%19.31%92.15%12.73%1.07%31.26%

[Credits: Tom Prince /Caltech/JPL]

Our sample of Magrathea CBPs is currently not ideal for LISA detection:

- Generally large orbits + WD are lightweight = long CBP orbital periods
- Secular approach not allowing unstable orbital shrinking

> Only **one** CBPs per system ?

[Credits: Tom Prince /Caltech/JPL]

Our sample of Magrathea CBPs is currently not ideal for LISA detection:

Generally large orbits + WD are lightweight = long CBP orbital periods

Secular approach not allowing unstable orbital shrinking

> Only **one** CBPs per system ?

Instability during WD phase necessary to perturb objects on to the star (Debes & Sigurdsson 2002; Veras et al. 2013, Veras & Hinkley 2021)

N-body integration [see talk by Nigioni!]

[Credits: Tom Prince /Caltech/JPL]

Our sample of Magrathea CBPs is currently not ideal for LISA detection:

Generally large orbits + WD are lightweight = long CBP orbital periods

Secular approach not allowing unstable orbital shrinking

> Only **one** CBPs per system ?

N-body integration [see talk by Nigioni!]

Multi-CBP systems and planet-planet scattering, or even 3rd–gen (post-AGB) disks & planets ? [See talk by Ledda!] Columba+(2023)

CIRCUMBINARY PLANETS EVOLUTION: SUMMARY

Main takeaways:

- > 23% 32% of all giant CBPs survive for one Hubble time to become *Magrathea* planets
- Single CBPs evolve towards larger and larger orbits as their hosts die
- Around 33% of the binary stars eventually merge
- > Photoevaporation has a negligible impact on a population of giant CBPs
- Eccentricity alone does not prevent the long-term survival

Back up slides

Pop A + B

Pop A + B

CRITICAL SEMIMAJOR AXES

