Finding Circumbinary Planets

A Transit Detection Framework for TESS Eclipsing Binaries

The Formation and Long-term Evolution of Circumbinary Planetary Systems Across the H-R Diagram | 15/01/2025

• Transiting CBP Population

Strong Observational Biases

- Dynamical stability constraints => long periods
 - Need long, continuous time baseline photometry

• Strong Observational Biases

- Dynamical stability constraints => long periods
 Need long, continuous time baseline photometry
- If CBPs preferentially aligned with binary (e.g., Foucart and Lai 2013), biased towards eclipsing binaries
- Strong Transit Timing Variations (TTVs) and Transit Duration Variations (TDVs)
 - Cannot use traditional methods of finding planets (e.g. BLS)
- CBPs can stop (or start) transiting on long timescales (often decades)

Importance of Increasing Sample Size

- CBP discoveries inform planet formation theories (e.g., Paardekooper et al. 2012, Penzlin et al. 2021, Coleman et al. 2023)
- Provide testbeds for studying three-body dynamics
 - Impact of stellar evolution (e.g., Kostov et al. 2016b)
 - Dynamical stability (e.g., Chavez et al. 2014, Quarles et al. 2018)
- Need more planets to make more robust statistical inferences about the overall population

• Transiting CBP Detection

- Various detection algorithms have been developed
 - CB-BLS (Ofir 2008)
 - QATS-EB (Windemuth et al. 2019)
 - STANLEY (Martin and Fabrycky 2021)
- However, these search over a large parameter space and hence can be computationally intensive (for a blind search)
- Recently, there has been a lot of work looking for long-period planets by identifying single transit events (monotransits) with TESS (e.g., Gill et al. 2020abc, Grieves et al. 2022)

Transit Detection Framework

Eclipsing Binary Sample

TESS Eclipsing Binary Catalogue (Prša et al. 2022)

• 4584 EBs from Primary Mission SPOC 2-min cadence lightcurves

Eclipsing Binary Sample

Eclipsing Binary Sample

Split sample into CVZ and non-CVZ

• Obtain a mask for in-eclipse data within the range

$$\boldsymbol{\phi}_{p,s}$$
 - $w_{p,s}/2 \le \boldsymbol{\phi} \le \boldsymbol{\phi}_{p,s} + w_{p,s}/2$

• Detrending

Problem: Need a general detrending approach that accounts for differing noise properties (while still preserving transit signatures)

Step 1: Periodic Variability

Calculate Lomb-Scargle periodogram

Fit lightcurve with sum of sines and cosines (Mazeh and Faigler 2010)

••• Step 2: Non-periodic Variability

Apply grid of biweight filters with variable window length ([1,3] days)

Decreasing window length

• Transit Search

- Use TESS-SPOC FFI data (Caldwell et al. 2020)
 - SAP preferred over PDCSAP
- Search for monotransits by identifying Threshold Crossing Events (TCEs, same method as Hawthorn et al. 2024)
 - For each cadence, calculate the Median Absolute Deviation (MAD) of a 4 day window
 - TCE is flagged if three consecutive data points lie below a threshold based on the MAD (default 3 × MAD)

TOI-1338 b

Davies et al. (in prep.)

Skye excess metric (see Thompson et al. 2018, Fernandes et al. 2022)

Other cuts:

- SNR > 5
- Duration < 1 day
- Detrending-dependence (see Dévora-Pajares et al. 2024)
 - If a given TCE is identified in < 90% of lightcurves after the variable biweight detrending, it is rejected

Model comparison

Davies et al. (in prep.)

Detrending artefact (sinusoid)

Transit

Detrending artefact (step)

Preliminary Results & Future Work

•• Testing on Known Transiting CBPs

Davies et al. (in prep.)

Davies et al. (in prep.)

Davies et al. (in prep.)

Candidate Events

Davies et al. (in prep.)

Candidate Events

Davies et al. (in prep.)

What will be done?

- Apply to the non-CVZ
 EBs
- Injection-retrieval tests
 - Quantify limits of

detection algorithm

What could be done?

- Apply to larger sample of EBs
- Apply to non-eclipsing binaries
 - to search for misaligned CBPs
- Estimate occurrence rate of CBPs using TESS data

- Automated detection of CBPs is difficult!
- Identifying individual transits has several advantages:
 - Useful for identifying sparse/non-periodic transits (misaligned CBPs, "one-two punch" effect)
 - Computational simplicity
- Developed a semi-automated transit detection framework for identifying individual transit events in TESS eclipsing binaries
- Method works for identifying known transiting CBPs, particularly those with high SNR
- Identified a handful of candidates which need validation
- Framework could be applied to many problems relating to CBPs

Backup slides

Armstrong et al. (2013)

Kepler-413 b, Kostov et al. (2014)

• Nodal Precession

Kepler-1661 b, Socia et al. (2020)

• Transiting Exoplanet Survey Satellite (TESS)

- All-sky survey launched in 2018
- Survey broken up into sectors
 - $\circ~~24^{\circ}\,x\,96^{\circ}$ region of the sky observed for ~27 days

Credit: Y. Eschen

•• "One-two punch" effect

