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Circumbinary planets

We want to find out where a planet is allowed to be around the
binary without its orbit being destabilized

|

Important for many processes:

planet formation
planet detection
habitability etc.
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Abstract  In this paper. we give a summary of stability criteria that have been derived for
hierarchical triple systems over the past few decades. We give a brief description and we
discuss the criteria that are based on the generalisation of the concept of zero velocity sur-
faces of the restricted three body problem. to the general case. We also present criteria that
have to do with escape of one of the bodies. Then, we talk about the criteria that have been
derived using data from numerical integrations. Finally, we report on criteria that involve the
concept of chaos. In all cases, wherever possible, we discuss advantages and disadvantages
of the criteria and the methods their derivation was based on, and some comparison is made
in several cases.

Keywords Celestial mechanics - Three body problem - Stability



Some historical background




THE ASTRONOMICAL JOURNAL VOLUME 82, NUMBER 9 SEPTEMBER 1977

Planetary orbits in binary stars
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Numerical integrations of the general three-body problem, with one component having
a planetary mass, indicate that stable planetary orbits can exist in binary stars. The
limitation for stability is that the ratio of the periastron distance of the outer tertiary
component to the semimajor axis of the close component be somewhere in the range
3—4, regardless of which of the components is the planet. For most known binaries, this
region of stability includes the region of habitability for planets.

Numerical simulations of HTS:

- 2 stars + planet (both S-type & P-type)
- Planar systems
- Largest mass ratio not exceeding 100:1
- Planet mass m= Mg, M,
- Binary eccentricity e, =0, 0.5
- Planetary eccentricity e,=0
- Time of integrations: 10-20 outer revolutions
- Stability : semi-major axes and eccentricities showed no large changes
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limitation for stability is that the ratio of the periastron distance of the outer tertiary
component to the semimajor axis of the close component be somewhere in the range
3—4, regardless of which of the components is the planet. For most known binaries, this
region of stability includes the region of habitability for planets.

Numerical simulations of HTS:
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- Planar systems
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- Binary eccentricity e, =0, 0.5
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Astron. Astrophys. 167, 379-386 (1986) ASTRONOMY
AND
ASTROPHYSICS

Numerical simulations of HTS:

Critical orbits in the elliptic restricted three-body problem

R. Dvorak

e o e - 2 stars + planet ( P-type)
- Planar systems
- Equal mass binary
- Planet = massless
Dvorak (1986) - Binary eccentricity e,=0-0.9
- Planetary eccentricity e =0
- Time of integrations: 500 binary periods
- Stability : eccentricitiy < 0.3
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Numerical simulations of HTS:

Critical orbits in the elliptic restricted three-body problem

ak e o s o - 2 stars + planet ( P-type)
- Planar systems
- Equal mass binary
- Planet = massless
Dvorak (1986) - Binary eccentricity e,=0-0.9
- Planetary eccentricity e =0
- Time of integrations: 500 binary periods
- Stability : eccentricity < 0.3

UCO=2374+2.76¢e —1.04 ¢
and
LCO=2.0942.79¢ —2.07 &

UCO : Upper Critical Orbit
LCO : Lower Critical Orbit




- That work was extended to unequal mass binaries by Dvorak et al. (1989)
and to retrograde orbits by Hong & van Putten (2021)

- Rabl & Dvorak (1988) provided stability limits for S-type orbits.
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Holman & Wiegert 1999

IriTiAL CONDITIONS FOR THE BINARIES AND
TeST PARTICLES

Inner Region Outer Region
Binaries
a,= 1.0

01<u<09 01<p=<05
Au=10.1

00<e<038 00<e< 07
Ae =101

Binary phase: periapse or apapse

Test Particles

0.02a, < a < 0.5a, 1.0a, < a < 5.0a,
Aa = 0.0025-0.01a, Aa =01a,
ep=i=ﬂ=m=0.0

M =07, 45°, 907, 135°, 180°, 225°, 270", 315°

Note—The binary semimajor axis is a,, its
eccentricity is e, and its mass ratio pu= m,/
(m, + m,). A test particle’s initial semimajor axis,
eccentricity, inclination relative to the binary
plane, longitude of the ascending node, argument
of perihelion, and mean anomaly are designated
by a, €, Iy 0, w, and M, respectively.

Numerical simulations of HTS:

- 2 stars + planet ( S-type & P-type)
- Planar systems
- Planet = massless
- Planetary eccentricity e,=0
- Time of integrations: 104 binary periods
Stability : escape or close encounter with the stars

‘At the end of the integrations, the semimajor axis at
which the test particles at all initial longitudes
survived the full integration time is determined. We
call this the critical semimajor axis.
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Binary phase: periapse or apapse

Test Particles

0.02a, < a < 0.5a, 1.0a, < a < 5.0a,
Aa = 0.0025-0.01a, Aa =01a,
ep=i=ﬂ=m=0.0
M =07, 45°, 90°, 135°, 180°, 225°, 270°, 315°

Note—The binary semimajor axis is a,, its
eccentricity is e, and its mass ratio pu= m,/
(m, + m,). A test particle’s initial semimajor axis,
eccentricity, inclination relative to the binary
plane, longitude of the ascending node, argument
of perihelion, and mean anomaly are designated
by a, €, Iy 0, w, and M, respectively.

Numerical simulations of HTS:

- 2 stars + planet ( S-type & P-type)
- Planar systems
- Planet = massless
- Planetary eccentricity e,=0
- Time of integrations: 104 binary periods
Stability : escape or close encounter with the stars

‘At the end of the integrations, the semimajor axis at
which the test particles at all initial longitudes
survived the full integration time is determined. We
call this the critical semimajor axis.

S-type

.= [(0.464 + 0.006) + (—0.380 + 0.010)u

+ (—0.631 + 0.034)e + (0/586 + 0.061)ue
+ (0.150 4 0.041)e? + (—0.198 < 0.074)ue?]a,

P-type

a, = (1.60 + 0.04) + (5.10 + 0.05)e
+(—2.22 + 0.11)e* + (4.12 + 0.09)u
+(—4.27 + 0.17)eu + (—5.09 + 0.11)pu*
+ (4.61 + 0.36)e"u” .
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S-type

P-type
Quarles et al. (2020):

Quarles et al. (2018):

- 3D orbits
- Extended binary mass ratio

N\

Same function as H&W but with adjusted coefficients.
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Comment: In many cases for P-type systems, “islands” of instability were noticed at
values greater than the critical semimajor axis. This was due to the definition of the
critical semimajor axis in H&W.

Kepler-16b (Chavez et al. 2015)
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Tidal interactions in star cluster simulations
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Similarities between escape in HTS and chaotic energy exchange
in the binary — tides problem.

% ITH.
180)

ms ) 1 4+ eout

my +ma” (1 — ﬁuut)%

(1-0.3

RS = 2.8ap | (14

R,°™is the critical outer pericenter distance and /,, is the mutual inclination.

If RpC”'f <R, then the system is stable.

The above equation was not tested for planetary mass bodies.



hups://doi.org/ 10. 1051/0004-6361/202244329 tronomy
@© The Authors 2023 A tl"OphySiCS

Stability of coorbital planets around binaries
Stelun Adelbert! Anna B, I Penzli M. Schiiler' @, Wilhelin Kley'-*
s

Adelbert et al. 2023

Numerical simulations of HTS:

- 2 stars + planet (P-type)
- Coplanar systems
- Same binary mass ratio as H&W
- Planet mass m= 10+ M, ?
- Binary eccentricity e, =0-0.5
- Planetary eccentricity €,=0-0.9
- Time of integrations: 10° binary periods
- Stability : planetary semi-major axis < 20% change of its initial value
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Stability of coorbital planets around binaries
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Adelbert et al. 2023

Numerical simulations of HTS:

- 2 stars + planet (P-type)
- Coplanar systems
- Same binary mass ratio as H&W
- Planet mass m= 10+ M, ?
- Binary eccentricity e, =0-0.5
- Planetary eccentricity €,=0-0.9
- Time of integrations: 10° binary periods
- Stability : planetary semi-major axis > 20% change of its initial value

Feperi/@pin = (1.36 = 0.05)
+ (5.79 £ 0.19)epi, — (5.87 = 0.39)e2.

+ (1.99 = 0.32)ptpin — (3.14 = 0.52)u;,
+ [(1.85 = 0.05)

— (2.10 % 0.46)e,,, + (3.00 = 0.52)epintivinlep-
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Abstract

In this work we revisit the problem of the dynamical stability of hierarchical triple systems with applications to
circumbinary planetary orbits. We derive critical semimajor axes based on simulating and analyzing the dynamical
behavior of 3 x 10® binary star—planet configurations. For the first time, three-dimensional and eccentric planetary
orbits are considered. We explore systems with a variety of binary and planetary mass ratios, binary and planetary
eccentricities from 0 to 0.9, and orbital mutual inclinations ranging from 0% to 180°. Planetary masses range
between the size of Mercury and the lower fusion boundary (approximately 13 Jupiter masses). The stability of
each system is monitored over 10° planetary orbital periods. We provide empirical expressions in the form of
multidimensional, parameterized fits for two borders that separate dynamically stable, unstable, and mixed zones.
In addition, we offer a machine learning model trained on our data set as an alternative tool for predicting the
stability of circumbinary planets. Both the empirical fits and the machine learning model are tested for their
predictive capabilities against randomly generated circumbinary systems with very good results. The empirical
formulae are also applied to the Kepler and TESS circumbinary systems, confirming that many planets orbit their
host stars close to the stability limit of those systems. Finally, we present a REST application programming
interface with a web-based application for convenient access to our simulation data set.

Unified Astronomy Thesaurus concepts: Celestial mechanics (211)



Motivations for this work:

i) The above circumbinary stability criteria only cover parts of the parameter
space.

ii) The various definitions of stability used in past works may result in

misclassification of circumbinary planetary orbits as stable while they are actually
unstable or vice versa.

Aims of this work:

i) To extend and homogenize the results of previous studies on the dynamical
stability of circumbinary planetary orbits

ii) To remedy the limitations and inconsistencies that arise from combining stability
estimates from different works by carrying out a self-consistent set of numerical
simulations over long timescales.



Parameter Space:

Masses:
?H-": IHJ
My=———and M, = !
my + m» m + ms
Eccentricities: €p. €, = {0, 0.1. 0.2, 0.3

Mutual Inclination:

126°

. 144°, 162°,
Planetary slowly varying angles: w, w,
Planetary true anomaly: f, €10°,45°,90°, 1

Binary true anomaly: f, € {0°,180°}

Integration time=1000000 planetary orbital periods

c {1072, 1073, 1074, 1073,
. 0.4, 0.

I, = {07, 187, 367, ¢

€ {0.5, 0.3, 0.1, 0.05, 0.02, 0.01}

107%, 1077}

5.0.6, 0.7, 0.8, 09}

. 72°,90°, 108°,
180°).

, Q, € {0°,90°,180°}

. 180°, 225°, 2707, 3157}

Semi-major axis resolution=0.1
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Integration time=1000000 planetary orbital periods Semi-major axis resolution=0.1




Criteria for instability

For any initial position of the planet:

i) either of the binary or planetary orbital eccentricity becomes > 1
ii) orbit crossing

iii)ap < 0.001 or a; > 100

iv) a, = 1000

Inner Outer

Looking for two critical ®
borders:

fully unstable .. mixed behavior fully stable



Parameters involved in our problem:

masses, eccentricities, semi-major axes, coplanarity of
the system, various orbital angles

and

the integration time!
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Results

Effect of each parameter on the stability borders:
- binary mass ratio: moderate effect

- planetary mass ratio: insignificant effect

- binary eccentricity: moderate effect

- planetary eccentricity: strongest effect

- mutual inclination: moderate effect

- planetary pericenter: small effect

node: insignificant effect
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Figure 5. Crnitical semimajor axis against mutual mclination for a system with
M, =0.05, M, =10 * e, = 0.8, and e, = 0. The triangles represent the inner
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critical border while the circles indicate the outer one.

Georgakarakos et al. (2024)

In agreement with
Doolin & Blundell (2011),
Chen et al. (2020)



Results

Effect of each parameter on the stability borders:
- binary mass ratio: moderate effect

- planetary mass ratio: insignificant effect

- binary eccentricity: moderate effect

- planetary eccentricity: strongest effect

- mutual inclination: moderate effect

- planetary pericenter: small effect

node: insignificant effect
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Figure 2. Mean and standard deviation of outer vs. inner stability borders in units of logy, of the binary semimajor axis. The color scale refers to the binary orbit
eccentricity (top left), the planet’s orbital eccentricity (top right), the binary mass rato (bottom left), and the mutual inclination (bottom right). Stability limits depend
strongly on the planetary orbital eccentricity, which accounts for most of the variance in the system. Stability borders also show roughly the same sensitivity to the
orbital eccentricity of the binary star, the binary mass ratio, and the inclination of the system.

Georgakarakos et al. (2024)
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and the longitude of the ascending node (bottom right). In the parameter regime we have chosen for this study, the planet’s mass does not substantially affect the
stability limits. Aligned pericenters lead to lower instability in a system. The relative position of the nodes does not significantly impact the location of stability limits.

Georgakarakos et al. (2024)



Fitting formulae

- For every set of values (M,, M, e, e, l..), we had 9 critical distance values for
different combinations of ( Q,, w, ). We retained the largest value for the outer
critical border and the smallest value for the inner critical border (better markers
for our borders — 2 variables down).
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- For every set of values (M,, M, e, e, l..), we had 9 critical distance values for
different combinations of ( Q,, w, ). We retained the largest value for the outer
critical border and the smallest value for the inner critical border (better markers
for our borders — 2 variables down).

- Planetary mass dropped.
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- For every set of values (M,, M, e, e, l..), we had 9 critical distance values for
different combinations of ( Q,, w, ). We retained the largest value for the outer
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- Planetary mass dropped.

- Binary mass ratio and critical distances were rescaled using log,,. Mutual
inclination in radians.



Fitting formulae

For every set of values (M,, M, e, e, l..), we had 9 critical distance values for
different combinations of ( Q,, w, ). We retained the largest value for the outer
critical border and the smallest value for the inner critical border (better markers
for our borders — 2 variables down).

Planetary mass dropped.

Binary mass ratio and critical distances were rescaled using log,,. Mutual
inclination in radians.

Third order polynomial fit selected. X2 testing was used to control the quality of the
fits.



Fitting formulae

For every set of values (M,, M, e, e, l..), we had 9 critical distance values for
different combinations of ( Q,, w, ). We retained the largest value for the outer
critical border and the smallest value for the inner critical border (better markers
for our borders — 2 variables down).

Planetary mass dropped.

Binary mass ratio and critical distances were rescaled using log,,. Mutual
inclination in radians.

Third order polynomial fit selected. X2 testing was used to control the quality of the
fits.

Two fits constructed: one for e, < 0.8 and one for all e,.



B coefficient vector, C uncertainties vector, X parameter vector
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Figure 8. Relative percentage error distnbution from comparing our empirical fits against the results of numerical simulations. On the x-axis we have bins of relative
percentage error between the results from the numerical simulations and the fits of Equations (10}, while on the y-axis we have the percentage of systems that fall into a
specific error bin. The top row is for the ep < 0.8 case, while the bottom row plots represent the more eccentric case.
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Figure 9. Critical semimajor axis against mutual inclination for a variety of systems. The orange color refers to the inner boundary, while the black color denotes the
outer stability border. The continuous lines are our empirical fits as given in Section 3.2. The points are the output from the numerical simulations for the specific
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Fit performance against random simulations

In order to test the quality of our fitting formulae, we carried out a number of
additional, randomly generated, simulations. We drew parameter values for our
random systems from a uniform distribution within the ranges used for the
creation of the simulation dataset. The planetary semi-major axis was sampled
using rejection sampling upon distributions created from our simulation dataset.

50000 systems were created in total.



Classificatnon of the Results of Random Simulations Using the Fits Given in

Section 3.2

Inner Border Distribution

Quanuty
per Zone
MN.ULP. Stable Mixed Unstable Total
0 12,148 1826 (8.29) 1 (OL0%) 13975
(54.7%) (62.99)
1-15 216 (1.0%:) 1825 (8.29) 32 (0. 1% 2073 (9.3%)
16 54 (0.2%9) 2245 (10.1%) 3877 6176 (27.8%9%)
(17.59)
Total 12,418 5896 (26.5%) 3910 22224
(55.99) (17.6%9%) (100.0%)
Outer Border Distribution
Quantty
per Zone
MN.ULP. Stable Mixed Unstable Total
0 14.905 1712 (7.7%) 2 (0.0%) 16,619
(66.89) (74.5%9)
1-15 177 (0.8%) 1468 (6.5%) 18 (0. 1%) 1663 (7.4%)
16 37 (0.2%) 1685 (7.59%) 2320 4042 (18.1%)
(10.4%)
Total 15119 AB65(21.8%) 2340 22324
(6T.89) (10.59%) (100.0%)

Motes. N.U.LP: number of unstable initial positions of the planet on its initial
orbit. The percentages refer to the number of individual cases over the total
nurmber of cases. For the interpretation of numbers in bold please see the main
body of the paper.

Success rates:

Inner = 80.4% - 98.7%

Success rates:

Outer = 83.7% - 98.9%



Application to known circumbinary systems

Parameter Values of Circumbinary Systems Used for the Vahdation of the Empirical Stability Fits

System my s m, I, ay, a, €p e,
(M) Mo) (M) (deg) (au) (au)
Kepler-16 0.6897 0.20255 0.333 0.4 0.22431 0.7048 0.15944 0.00685
Kepler-34 1.0479 1.0208 0.22 1.81 (.22882 1.0896 0.52087 0.182
Kepler-35 0.8876 0.8094 0.127 1.28 0.17617 0.60345 0.1421 0.042
Kepler-38 0.949 (0.249 0.384 0.182 0.1469 046406 0.1032 0.032
Kepler-47 b 0.957 0.342 0.006513 0.166 0.08145 0.2877 0.0288 0.021
Kepler-47 ¢ 0.957 0.342 0.05984 1.165 0.08145 0.6992 0.0288 0.024
Kepler-47 d 0.957 (0.342 0.00997 1.38 0.08145 0.9638 0.0288 0.044
Kepler-64 1.528 0.378 0.531 2.814 0.1744 0.634 0.2117 0.0539
Kepler-413 0.82 0.5423 0.21 4.073 0.10148 0.3553 0.0365 0.1181
Kepler-433 0.944 0.1951 0.05 2.258 (.18539 0.7903 0.0524 0.0359
Kepler-1647 1.21 0.975 1.52 2.9855 0.1276 27205 0.1593 0.0581
Kepler-1661 0.841 0.262 0.053 0.93 0.187 0.633 0.112 0.057
TIC 172900988 1.2388 1.2023 274 1.45 0.191928 0.89809 044793 0.088
TOI-1338 b 1.127 0.3313 0.0685 0 0.1321 04607 0.155522 0.088
TOI-1338 ¢ 1.127 0.3313 0.205 0-180 0.1321 0.794 0.155522 0.16
Stability Borders for Known Circumbinary Systems
System a " as” d,,
(au) {au) {au)
Kepler-16 0.551 0.688 0.705
Kepler-34 0. 804 1.092 1.090
Kepler-35 0. 410 0511 0.603
Kepler-338 (0.349 0.427 0.464
Kepler-47 b 0178 0. 198 0.288
Kepler-47 c 0. 179 0.200 0.699
Kepler-47 d 0.181 0.206 0.964
Kepler-64 0.457 0.627 0.634
Kepler-413 0.236 0.281 0.355
Kepler-453 0.427 0.504 0.790
Kepler-1647 0.310 0.397 2.720
Kepler-1661 (.452 0.570 0.633
TIC 172900988 0.579 0.784 0.898
TOI-1338 b 0.337 0.448 0.461
TOI-1338 c 0.361 0.492 0.794




Table 3. Critical planetary semimajor axis for Kepler-16, Kepler-34, Kepler-35, Kepler-38, Kepler-64
and Kepler413. "W’ ‘07, K13, *S" and *K 14" stand for Welsh et al. (2012), Orosz et al. (2012b), Kostov
et al. (2013), Schwamb et al. (2013) and Kostov et al. (2014), respectively.

System Nominal Numerical Holman & Wiegert Mardling & Aarseth  Published
(au) (au) (au) (au) (au)

Lelll 07048 Lt B a6 (059 (W)

ﬁtm 1.0896 1.00 0.84 087 088 (WS

Kepler-35 0.603 45 0.52 0.50 0.53 0.49 (W)
Kepler-38 0.4644 043 0.39 0.43 0.37 (0)
Kepler-64 (K13) 0.642 0.65 0.53 0.58 —(K13)
Kepler-64 (S) 0.634 0.58 0.52 0.53 0.57 (8)
Kepler-413 0.3553 0.31 0.26 0.35 —(K14)

0.8 |

Chavez et al. (2015) 04

0.2

0.6 07 0S8 0.9 1 11
AU
q (AL

Figure 3. Eccentricity ep against pericentre distance gp for Kepler-34b.
The integration time is 10° yr. The open circle is the nominal position of
the planet, and the light-grey lines correspond to the locations of certain
mean motion resonances between the stellar and planetary orbits. From left
to right the resonances shown here are: 5:1. 6:1, 7:1, 8:1, 9:1, 10:1, 11:1,
12:1. 13:1 and 14:1.



Comparison with other results
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Figure 11. Comparison between different stability fits. Geo stands for the fits of the present work, Adel denotes the work by 5. Adelbert et al. (2023), HW denotes the
classification formula given in M. I. Holman & P. A. Wiegert (1999), and MA stands for the criterion developed by R. Mardling & 5. Aarseth (1999) and
R. A Mardling & S.J. Aarseth (2001). As previously, the black color denotes the outer critical border, while the orange color represents the inner critical border. The
circles are the results from our numerical simulations.
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We have also trained a Machine Learning model with our simulation
data (XGBRegressor model — Chen & Guestrin 2016).

Stability of circumbinary planets -- ML model

Ali-Dib. Mohamad '

Classification of the Results of Random Simulation Using the Machine
Leaming Model (e, < (0.8)

Inner Border Distribution

Quantity
per Zone
N.U.LP. Stable Mixed Unstable Total
0 12,658 1312 (5.9%) 5 (0.0%) 13,975
(57.0%) (62.9%)
1-15 382 (1.7%) 1671 (7.5%) 20 (0.1%) 2073 (93%)
16 133 (0.6%) 2500 (11.5%) 3483 G176 (27.8%)
(15.7%) The ML model was tested
Total 13,173 5543 (24.9%) 3508 22,224 H
(59.3%) (15.8%) (100.0%) agaInSt the 50000 randomly
Outer Border Distribution Chosen SyStemS Wlth Vel'y
Quantity good results.
per Zone
N.U.LP. Stable Mixed Unstable Total
] 15415 1203 (54%) I (0.0%) 16,619
(69.1%) (74.5%)
1-15 300 (1.3%) 1344 (6.0%) 19 (0.1%) 1663 (74%)
16 99 (0.5%) 1884 (R4%) 2059 (9.2%) 4042 (18.1%)
Total 15814 4431 (19.8%) 2079 (9.3%) 22324
(70.9%) (100.0%)




Online portal and Application Programmnq Interface (API

A software interface designed to facilitate interaction with large
catalogs of numerical stability simulations such as constructed in this
Work.

Vo Sy s gl

Stability of Circumbinary Planets

Mass ofprimarystar[Msun]: ', _: 2 ; i . EXOStab 20

Mass of secondary star [Msun]: {1

Mass of planet [Msun]: [So¢[s)8

Major semiaxis of binary orbit [au]: : : @ Gallery

Eccentricity of binary orbit: :
Eccentricity of planetary orbit : # _@ Results
Inclination of planetary orbit [deg] :
Argument of periapsis for planetary orbit [deg]:
Longitude of ascending node for planetary orbit [deg]:
Number of points to plot: _

Q About




Summary

e \We investigated the dynamical stability of circumbinary planets by
carrying out a very large number of numerical simulations covering
almost completely the parameter space

e \We derived empirical formulae for the critical planetary distances

e \We trained a Machine Learning model as an additional predictive
tool

e \We tested our tools against real and synthetic systems, as well as
against older stability formulae with excellent results.

e \We provide an online portal and application programming
interface for accessing our simulation dataset.

e More information can be found in
Georgakarakos et al. (2024), AJ, 168, id.224.
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