"The Photometric Method of Detecting Other Planetary Systems"

Borucki & Summers, 1984

"Two methods for selecting stars... #2 eclipsing binary stars"

Pro: increased transit probability

Con: ... dilution?

The #1 Problem: Geometry

The #1 Problem: Geometry

The #2 Problem: Dynamics

1. Orbital timescale

The #2 Problem: Dynamics

1. Orbital timescale

2. Secular timescale

Finding Circumbinary Planets with Orbital Dynamics

David V. Martin

Boston

Cambridge

A bunch of other universities that you've probably never heard of

Problems

Geometry
 Dynamics

Status 12 Kepler, 2 TESS

Goal

Find CBPs as easily as single star planets

Solutions

 $\bullet \bullet \bullet$

Solutions?

Kovacs+ 2002 - BLS

Phase-fold on strict periodicity

Kovacs+ 2002 - BLS

Ofir 2008 - CB-BLS

Solutions?

Phase-fold accounting for binary movement, not dynamics

Kovacs+ 2002 - BLS Ofir 2008 - CB-BLS

Carter & Agol - QATS

Solutions?

BLS but allows for quasiperiod transit intervals.

Not physically motivated but can find planets with large TTVs

Transit timing

Kovacs+ 2002 - BLS Ofir 2008 - CB-BLS Carter & Agol - QATS

Kostov+ 2013/14

Solutions?

BLS in 2-transit segments

Flip light curve and run BLS again - did you just find noise?

Kovacs+ 2002 - BLS Ofir 2008 - CB-BLS Carter & Agol - QATS Kostov+ 2013/14

Armstrong+ 2013/2014

Solutions?

Phase-fold into window of possible times, account apsidal for precession

Kovacs+ 2002 - BLS Ofir 2008 - CB-BLS Carter & Agol - QATS Kostov+ 2013/14 Armstrong+ 2013/2014

Klagyivik+ 2017

Solutions?

QATS within a window defined by Armstrong+ 2013

Kovacs+ 2002 - BLS Ofir 2008 - CB-BLS Carter & Agol - QATS Kostov+ 2013/14 Armstrong+ 2013/2014 Klagyivik+ 2017 Windemuth+ 2019 - QATS-EB

Solutions?

"Regularized light curve" from 2 Keplerians. Then run QATS.

Kovacs+ 2002 - BLS Ofir 2008 - CB-BLS Carter & Agol - QATS Kostov+ 2013/14 Armstrong+ 2013/2014 Klagyivik+ 2017 Windemuth+ 2019 - QATS-EB The Human Eye

Solutions?

Perhaps "easy" for Kepler-16

Kovacs+ 2002 - BLS Ofir 2008 - CB-BLS Carter & Agol - QATS Kostov+ 2013/14 Armstrong+ 2013/2014 Klagyivik+ 2017 Windemuth+ 2019 - QATS-EB The Human Eye

Solutions?

Gets tough for Kepler-47 and others

More recent approaches

Kostov+ 2020 "1-2 punch" Dominic Oddo "FORCES" Benjamin Davies [catchy name TBD]

Large Numbers of Large Planets

Kepler

Martin & Fabrycky 2021 "Stanley" + new students

Small Numbers of Small Planets

Searching for Small Circumbinary Planets I. The STANLEY Automated Algorithm and No New Planets in Existing Systems

DAVID V. MARTIN $\mathbb{D}^{1,2,3}$ AND DANIEL C. FABRYCKY \mathbb{D}^2

STANLEY IS AN N-BODY SEARCH GRID

time

DIFFICULTIES

Difficulties

1. Speed

Parameter List

Binary	P
Period, P	Per
Eccentricity, e	Ecc
Argument periapse, ω	Arg
Orbital phase, 9	Ork
Inclination, I	Inc
Long. Ascending Node, Ω	Lor

Up to 18 parameters 10,000,000 N-body sims per target

anet

- riod, P
- centricity, e
- gument periapse, ω
- bital phase, 9
- lination, l
- ng. Ascending Node, Ω

Bodies

MA MB Mp RA RB RB

Difficulties

1.Speed2.Precision

data N-body model

time

data N-body model

TTVs from n-body: ~ 90% TTVs from sliding: ~ 10%

time

Difficulties

1. Speed 2. PRECISION 3.

Detrending

Be careful what you get rid of

പ്പ

- Eclipses
- STELLAR VARIABILITY/ROTATION X2
- DOPPLER BEAMING/BOOSTING
- ELLIPSOIDAL VARIATION
- Reflection
- VARIABLE TRANSIT DURATION

Difficulties

1. SPEED 2. PRECISION 3. Detrending 4. FALSE-POSITIVES

Finding Kepler-16 (8 R_⊕)

Time [BJD – 2,455,000]

Finding Kepler-16 (8 R₊)

Finding Kepler-16 (8 R_⊕)

SDE > 8 for detection

Finding Kepler-47b (3 R⊕)

SDE > 8 for detection

Finding Kepler-47b, c and d

49 days

187 days

303 days

Pushing detection limits

Finding Kepler-16 @ 2R

Finding Kepler-16 @ 1R

Echoes of the past...

- Suggestion for students
- "do a literature review before starting a project"

- I have a confession to make...
- "... I did the literature review when I wrote the paper"

A Matched Filter Method for Ground-Based Sub-Noise Detection of **Terrestrial Extrasolar Planets in Eclipsing Binaries:** Application to CM Draconis

JON M. JENKINS, LAURANCE R. DOYLE, AND D. K. CULLERS

1996

A Matched Filter Method for Ground-Based Sub-Noise Detection of **Terrestrial Extrasolar Planets in Eclipsing Binaries:** Application to CM Draconis

JON M. JENKINS, LAURANCE R. DOYLE, AND D. K. CULLERS

A Preliminary Search By Stanley

~200 best eclipsing binaries

A Preliminary Search By Stanley

Number known pre-search: 12

A Preliminary Search By Stanley

Number known pre-search: 12

Number known <u>post</u>-search: 13

KIC 10753734

Circumbinary Planets at the K/T (Kepler-TESS) Boundary

Show affiliations

Welsh, William F. August 2019

Eight years ago at the ESS II conference, we presented the first Kepler circumbinary planets. Since then, 11 planets in 9 systems have been discovered. In this talk we present the last two unpublished, unambiguous Kepler transiting circumbinary planets: KOI-3152 and <u>KIC 10753734</u>. Both systems have planets with rapidly precessing orbits and significantly spotted stars which has made their characterization difficult. The orbital periods are 28.2 and 19.4 days for the binaries, and 171 and

Injection-Retrieval

The size distribution of planets differs!

Transiting CBPs slowed down a tad 1. Found CBPs with RV's and ETV's 2. Did some theory (DO small CBPs exist? Multis? Moons?)

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS **512**, 602–616 (2022) Advance Access publication 2022 January 17 https://doi.org/10.1093/mnras/stac090

Running the gauntlet – survival of small circumbinary planets migrating through destabilizing resonances

David V. Martin[®]^{*} and Evan Fitzmaurice

Exomoons of Circumbinary Planets

BEN R. GORDON,¹ HELENA BUSCHERMÖHLE,¹ WATA TUBTHONG,¹ DAVID V. MARTIN,¹ SEAN SMALLETS,¹ GRACE MASIELLO,¹ AND LIZ BERGERON¹

¹Department of Physics & Astronomy, Tufts Astronomy, 574 Boston Avenue, Medford, MA, USA

3. Did some *shock horror* non-CBP stuff

4. But now... we're back!

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS **512**, 5023–5036 (2022) Advance Access publication 2022 March 21 https://doi.org/10.1093/mnras/stac741

Sculpting the circumbinary planet size distribution through resonant interactions with companion planets

Evan Fitzmaurice,^{1 \star} David V. Martin¹ and Daniel C. Fabrycky²

Improved Kepler search

Wata Tubthong 4th year PhD student

- What's been added:
- 1. Improved detrending
- 2. Smarter injection/retrieval
- 3. Interpolated search grid
- 4. Larger sample
- 5. Preliminary results: still a lack
 - of small planets

Applications to TESS

Tess Kleanthous (Masters)

Noah Stiegler (Undergrad)

Arielle Weinstein (Undergrad)

Casey Hartman (Undergrad)

Izzy Ward (Undergrad)

Early TESS results

Early TESS results

How's Your Internship Going? This Teen Found a Planet

Wolf Cukier, 17, was analyzing brightness of stars during an internship with NASA last year when he made the discovery.

Early TESS results Stanley finds TOI-1338 "easily" Next step: entire EBLM/BEBOP sample

Conclusions

- 2. Community effort
- 3. Small circumbinary planets are genuinely "rare"
- 4. TESS is a different beast
- 5. Improved Stanley results and code on the way

1. Automatic methods of CBP detection are challenging

Conclusions

- Automatic methods of CBP detection are challenging 1.
- **Community effort** 2.
- Small circumbinary planets are genuinely "rare" 3.
- **TESS** is a different beast 4.
- Improved Stanley results and code on the way 5.

Common false positives 9 DEEPEST FLUXES PER TARGET

270 ECLIPSING BINARIES

