Formation of free-floating planets (FFPs) from circumbinary systems

www.eso.org

Gavin Coleman (QMUL), William DeRocco (John Hopkins)

CBPs across the HR diagram, Florence 2025

What are FFPs

- Since the IAU have no definition, we made one up at recent conference (RogueWorlds2024)
- Follows the IAU definition:
 - Massive enough to maintain hydrostatic equilibrium (effectively spherical)
 - Is at most 13 Jupiter masses (not a Brown Dwarf)
- No definition based on dynamical clearing, or orbiting an object
- They should not be orbiting a known object

The important question of our time

The answer to everyone's burning question is

YES

Pluto would be a planet if it was ejected

What are FFPs

- Free floating planets (FFPs) are planetary sized objects that are not bound to any star or brown dwarf
- How they form is presently unknown
- Do they form through star formation processes? Or planet formation processes?
- Is there a wide diversity in FFPs? What is their underlying distribution?
- How well do they match bound populations?
- What do they have to do with Circumbinary Systems?

Observations of FFPs

- First discovered in 2000 with UKIRT observations of the Orion Nebula, where several objects found below the deuterium burning limit (Lucas+ 2000)
- Other direct imaging observations have pushed the mass of known FFPs down to ~Jupiter mass (Caballero 2018)
- Some surveys observed binarity in FFPs with JWST images, adding further complexity to their formation histories (Pearson+ 2023)

NASA/ESA/CSA JWST NIRCam (McCaughrean et al.)

Observations of FFPs

- FFPs have also been observed in microlensing data
- Smaller signatures than stars hard to disentangle from other physical effects, e.g. flares
- Terrestrial (Mroz+ 2020), Neptunian (Mroz+ 2019) and Jovian (Sumi+ 2011) mass planets have been found

Fig. 1. Light curves of two ultrashort microlensing events. *Upper panel*: OGLE-2012-BLG-1323. *Lower panel*: OGLE-2017-BLG-0560. Both events show strong finite-source effects, which allows us to measure their angular Einstein radii.

Mroz+ 2019

Distributions from observations

- Handful of observations have allowed some initial estimations of the mass distribution (Sumi+ 2023)
- Extrapolate with a constant slope as mass decreases
- Follows a power law model:

$$\frac{dN}{d\log M} = \frac{2.18^{+0.52}_{-1.40}}{dex \, x \, star} \left(\frac{M}{8M_{\oplus}}\right)^{-0.96}$$

Sumi+ 2023

How to form FFPs

- More massive objects can form similar to stars:
 - Core collapse (Miret-Roig+ 2022)
 - Aborted stellar embryo injection (Reipurth+ 2001)
 - Photo-erosion of pre-stellar cores (Whitworth+ 2004)
- Terrestrial, Neptunian, Giant planets can form through planet formation processes, before being ejected from their parent system via:
 - Planet-planet scattering (Rasio+ 1996, Veras+ 2012)
 - Stellar flybys (Wang+ 2023)
 - Interactions with binary stars (Coleman+ 2023,2024, Chen+ 2024)
- Most planet formation scenarios include pre-defined distributions of planets – either initial embryos, or fully formed planets
- Focus on possibility of formation rather than occurrence rates / properties

What do we do?

- Explore the production rates of FFPs within circumbinary systems (Coleman 2024)
 - What masses of FFPs are produced?
 - To what frequency are they ejected from the systems?
 - Can their ejection location tell us anything?
- Include planet formation processes no predefined distributions
 - Give a better representation of FFP production efficiencies
 - Allows us to test our understanding and effectiveness of planet formation processes/models when comparing with observations
- Derive a galactic population using assumptions for planet formation in non-circumbinary systems (Coleman & DeRocco 2024)
 - Wide Binary Systems
 - Single star Systems

Basic Model

- Use Mercury 6, including effects of central binary (Chambers+ 1999,2003)
- Thermally evolving circumbinary viscous disc model including irradiation from both stars, and also a central circumbinary cavity
- Photo-evaporation due to high energy radiation from central stars (Picogna+ 2023) and from nearby stars (Haworth+ 2023)
- Planetesimal and Embryo formation models based on streaming instability (Coleman 2021)
- Pebble accretion model Pebble production front expanding outwards forming pebbles that can be accreted by planets (Johansen+ 2017)
- Gas accretion onto embryos above 1 M_{Earth} using fits to 1D envelope structure models (Poon+ 2021)
- Planet migration for embedded planets (Paardekooper+ 2010,2011) and for gap opening planets (Lin+ 1986, Crida+ 2006)

Binary Cavity Inclusion

- Circumbinary stars form inner cavities devoid of gas
- Model this cavity through manipulating viscosity alpha parameter
- Match the 1D alpha models to 2D FARGO simulations assuming steady state accretion through the disc
- Allows buildup of material to form in 1D models similar to those seen in 2D models

Incorporating a precessing 2D cavity

- Model a 2D surface density based on 1D azimuthally averaged value
- Matches FARGO simulations quite well, except in the cavity
- Not an issue for planet formation as low surface density, also inside the stability limit

Gavin Coleman – Formation and Evolution of Planetary Systems

Apocentre Torques

- Buildup of material at the cavity apocentre can also impart a torque on to nearby planets
- Use FARGO to create torque maps in 2D to simulate this based on 1D profiles
- Acts to align planetary orbits with the eccentric circumbinary disc

Eccentric disc

Eccentric disc in and around the cavity

Varying gas/pebble velocities around a planet's orbit

Fit profiles to disc eccentricity based on 2D hydro simulations

Calculate the gas and pebble velocity when determining accretion rates based on planets radial and azimuthal location

Coleman+ 2023

Setup

 Central stars based on those in the BEBOP-1 system

 Central circumbinary cavity properties calculated using hydrodynamic simulations with FARGO-3D

• Varied different parameters to explore their effect on the populations

Parameter	Description	Value
$M_{\rm A}~({ m M}_{\odot})$	Primary Mass	1.0378
$M_{ m B}~({ m M}_{\odot})$	Secondary Mass	0.2974
$T_{\rm A}$ (K)	Primary Temperature	4300
$T_{\rm B}$ (K)	Secondary Temperature	3300
$R_{ m A}~(m R_{\odot})$	Primary Radius	2
$R_{\rm B}~({ m R}_{\odot})$	Secondary Radius	1.5
$e_{ m bin}$	Binary Eccentricity	0.156
Metallicity (dex)	Stellar Metallicity	0
$r_{ m cav} \; (a_{ m bin})$	Cavity Radius	3.7377
e_{cav}	Cavity Eccentricity	0.4162
$r_{\rm cav,a} (a_{\rm bin})$	Cavity Apocentre	5.2933
C_1	Cavity Parameter 1	1.1
C_2	Cavity Parameter 2	0.32
C_3	Cavity Parameter 3	4.5

Table 1. Simulation common parameters.

Parameter	Lower Value	Upper Value	Dimension
$a_{ m bin}$ (au) $M_{ m disc}$ ($M_{ m bin}$)	$\begin{array}{c} 0.05 \\ 0.05 \end{array}$	0.5 0.15	linear linear
UV Field (G_0)	$1 \\ 10^{-4}$	10^5 $10^{-2.5}$	\log

Table 2. Values for the parameters varied amongst the populations.

Forming FFPs in Circumbinary Discs

Where do FFPs come from?

- Large range of planet masses undergo ejection
- Pericentre distance is a good proxy for ejection location
- Three distinct populations:
 - Binary low mass
 - Binary high mass
 - Planet-planet scatters
- Planet-planet scatters are a good proxy for those planets ejected in single star systems

Coleman 2024

Comparison with bound planets

- Majority of planets ejected are in the super-Earth regime
- Good agreement in relative number distributions between ejected planets and bound planets seen close to the central binary
- Could provide a useful comparison point between Roman and other missions e.g. PLATO

Planet-planet or binary ejections?

- Binary and planet-planet scattering eject different planets
- Planet-planet scatter mainly low-mass sub-terrestrial planets
- Binary more massive objects
- Peak seen around super-Earth masses
- Planet-planet scattering seen here used as proxy for single star ejections

Coleman 2024

Building a galactic population

- For Solar type stars, 60% are found to be in binaries (Offner+ 2023)
- The distribution in binary separations is found to follow a lognormal distribution for FGK stars (Raghavan+ 2010)

l_{loga} (companion fraction per *d* log *a*)

0.4

0.3

0.2

0.1

- Varies for different stellar masses and with metallicity
- Follow the FGK trend found by Raghavan+ 2010

Offner+ 2023

Building a galactic population

- Circumbinaries Similar to those presented in Coleman 2024 and make up 23% of all binaries
- Ultra wide binaries assumed to form planets similar to single stars, make up 25% of all binaries
- Intermediate binaries difficult to estimate their formation potential, due to either larger circumbinary cavities, or extreme truncation of the outer disc

Stellar Population	Semi-major Criteria	Stellar Percentage
Circumbinary Ultra Wide Binaries Intermediate Binaries Single Stars	$a_{ m b} < 3 { m au}$ $a_{ m b} > 300 { m au}$ $3 { m au} < a_{ m b} < 300 { m au}$ -	14% 15% 31% 40%
Total	-	69%

Coleman & DeRocco 2024

Building a galactic population

- Circumbinaries provide the majority of FFPs when taking into account the whole population
- Ultra wide binaries and Singles provide comparable contributions, but combined is only half that of circumbinaries
- Intermediate binaries assumed to not provide any planets. However a conservative estimate could be similar to single stars / system

Stellar Population	Semi-major Criteria	Stellar Percentage	FFPs / system	FFP total / star
Circumbinary Ultra Wide Binaries	$a_{\rm b} < 3 {\rm au}$ $a_{\rm b} > 300 {\rm au}$	$\frac{14\%}{15\%}$	9.7 2.28	$\begin{array}{c} 1.36 \\ 0.34 \end{array}$
Intermediate Binaries Single Stars	$3 \mathrm{au} < a_{\mathrm{b}} < 300 \mathrm{au}$ -	$31\% \\ 40\%$	$\begin{array}{c} 0\\ 1.14 \end{array}$	$\begin{array}{c} 0 \\ 0.46 \end{array}$
Total	-	69%	3.12	2.16

Coleman & DeRocco 2024

- Multiple features seen for the combined population
- Features can give insights into physical processes affecting planet formation
- Different stellar groups provide different planets

Coleman & DeRocco 2024

- Clearly separate planets ejected through binary interactions or through planet-planet scatters
- Single stars + UWBs supply low mass planets
- Circumbinaries provide super-Earths and giants as well

Coleman & DeRocco 2024

- Number frequency of low mass planets increase as mass decreases
- More Lunar mass planets than Earth mass
- Dearth of planets around an Earth mass

Coleman & DeRocco 2024

- Collisions between planets become more likely as mass increases
- Decreasing closest approach distances between mutually interacting planets
- Smaller delta-v between planets during interactions – more interactions required for ejection

Coleman & DeRocco 2024

- As planets reach ~Mars mass, they begin migrating
- Efficient around an Earth mass – quickly reach the cavity near the central binary
- Interactions with one of the binary stars leads to their ejection

Coleman & DeRocco 2024

- Peak at super-Earth masses coincides with the Pebble Isolation Mass (PIM)
- Pressure bumps in the disc due to planets halts the supply of pebbles
- Planet growth transitions from fast pebble accretion to slow gas accretion

Coleman & DeRocco 2024

- Allows a large number of planets to occupy this mass range for a long time
- Increases their chances of ejection through binary interaction whilst they grow

Coleman & DeRocco 2024

- Reduction in more massive planets being ejected due to lack of formation
- Lack of planets able to accrete significant gaseous envelopes and become giant planets
- Additionally, giant planets dynamically dominate their local area – less likely to be forced into ejection

Coleman & DeRocco 2024

Match observations?

 Observations found a power law model fits the data well

$$\frac{dN}{d\log M} = \frac{2.18^{+0.52}_{-1.40}}{dex \ x \ star} \left(\frac{M}{8M_{\oplus}}\right)^{-0.96}$$

- Agreement for high mass planets above $8M_{\oplus}$
- Peak and trough not modelled in observations
- Seeing evidence of these peaks gives insights into the processes affecting planet formation

Coleman & DeRocco 2024

Conclusions

- Generated a galactic population of stars and FFPs using circumbinary planet formation simulations
- Mass distribution of FFPs does not follow a single power law instead shows multiple features that give hints into planet formation processes:
 - Dearth of terrestrial mass planets Collisions favoured over ejections
 - Peak at super-Earths Migration and PIM
 - Lack of giant planets gas accretion time-scales
- High mass planet distribution agrees with observed distributions
- Observed distribution extrapolates into low mass regime poor agreement with models due to numerous features
- Galactic Population shows that circumbinary systems provide the majority of FFPs