Polar discs and circumbinary formation in highly misaligned discs

Jeremy L. Smallwood

Dodge Family Prize Fellowship in Astrophysics University of Oklahoma

The formation and long-term evolution of circumbinary planetary systems across the H-R diagram Jan. 14th 2025

- Observational motivation
- CBD alignment process
- Accretion from misaligned CBDs
- Dust dynamics in misaligned CBDs
- Implications for circumbinary planet formation

Outline

HD 98800B

polar

Circumbinary Planets

Kepler34				<u> </u>		
Kepler16				+	•	
Kepler 1660				<u>+</u>	•	
PSRB1620-26				-		
TIC172900988				-		
Kepler 1661				+	•	
Kepler453				•	•	
Kepler64+(PH1)					•	
Kepler35			-)	•	
Kepler38				•	•	
Kepler1647			+			•
T0I1338			. •		+ +	
Kepler413			-	-	•	
Kepler47			-	•	• •	
OGLE2007BLG30)9L		•			•
RR Cae		•				•
NY Vir	•					• •
Kepler451(2M19	38+46) 📍			•		•
NN Ser	•					
DP Leo	•					_
_						
		0.040			4 0 0 0	40.00
0.00	JI	0.010	0.10	00	1.000	10.00
			semi-	semi-major axis(a		exc

Circumbinary Disk Misalignment

- All observed circumbinary planets are aligned to the binary, however, misaligned disks are common.
- Why is there a discrepancy?
- A new population of planets <u>misaligned/polar planets around</u> <u>binary star systems</u>.

HD 98800

- Quadruple star system
- 47 pc and comprises two binaries:
 - HD 98800 AaAb
 - HD 98800 BaBb
- $a_{AB} = 54 \text{ au}, P_{AB} = 246 \text{ yrs}, e_{AB} = 0.52$
- The orbit of the BaBb binary is well constrained.
 - a = 1 au
 - e = 0.785
 - $M_{Ba} = 0.699 M$
 - $M_{Bb} = 0.582 M$

ALMA 1.3 millimetre continuum image of the HD 98800 BaBb dust disc, showing a narrow dust ring. Kennedy et al. (2019)

- Tilt inferred to be either 48 deg or 90 deg.
- Very compact dust ring at 2 au, extending to 3.5 au
- Gas disc: 1.6 to 6.4 au

Dec (J2000)

HD 98800 BaBb Circumbinay Disc

• Torques on the inner parts of polar disc are much weaker than in the coplanar case.

-> Smaller cavity size for a polar disc.

Franchini, Lubow and Martin (2019)

99 Herculis

- 99 Her consists of an F7V primary star and a K4V secondary star, with an estimated age of 6-10 (Takeda 2007)
- a = 16.5 au
- e = 0.766
- $P_{orb} = 56.3 \text{ yr}$

Kennedy et al. (2012) estimated the debris disc structure, inclination, and PA using two-dimensional Gaussian models

• The debris disc is tilted 87° with respect to the binary pericentre direction (Kennedy et al. 2012). The observed disc tilt is only 3° away from polar alignment.

KH 15D

Chiang & Murray-Clay (2004); Aronow et al. (2018); Smallwood et al. (2019b); Poon et al. (2020)

Misaligned CBD systems

IRS 43

Brinch et al. (2016)

Circumbinary Disc Alignment

 A misaligned circumbinary disc will undergo alignment either coplanar (Lubow & Ogilvie 2000; Foucart & Lai 2014) or polar (Aly et al. 2015; Martin & Lubow 2017; Zanazzi & Lai 2018) to the binary orbital plane.

$$i_{\min} = \arccos \left[\frac{\sqrt{5}e_{b0}\sqrt{4}e_{b0}^2 - 4j_0^2(1 - e_{b0}^2) + 1 - 2j_0(1 - e_{b0}^2)}{1 + 4e_{b0}^2} \right]$$

disc AM:
$$J_{\rm d0} = \int_{r_{\rm in}}^{r_{\rm out}} 2\pi r^3 \Sigma_0(r) \Omega dr$$

binary AM: $J_{b0} = \mu \sqrt{G(M_1 + M_2)a_{b0}(1 - e_{b0}^2)}$

Martin & Lubow 2019

Doolin & Blundell 2011

Circumbinary Disc Alignment

- Circumbinary discs will align to three stable orientations.

Smallwood et al. (2024e)

On average, the polar alignment timescale is shorter than the coplanar alignment timescale.

Alignment Timescales

Lubow & Martin (2019) Smallwood et al. (2019b)

$$\Omega_{\rm b} = \sqrt{G(M_1 + M_2)/a^3}$$

$$\Omega_{\rm p} = \frac{3\sqrt{5}}{4} e_{\rm b} \sqrt{1 + 4e_{\rm b}^2} \frac{M_1 M_2}{M^2} \left\langle \left(\frac{a_{\rm b}}{r}\right)^{7/2} \right\rangle \Omega_{\rm b} \qquad \text{(Po}$$

$$\Omega_{\rm p} = \frac{3}{4} \sqrt{1 + 3e_{\rm b}^2 - 4e_{\rm b}^4} \frac{M_1 M_2}{M^2} \left\langle \left(\frac{a}{R}\right)^{7/2} \right\rangle \Omega_{\rm b} \qquad \text{(Cop}$$

$$\left\langle \left(\frac{a_{\rm b}}{r}\right)^{7/2} \right\rangle = \frac{\int_{r_{\rm in}}^{r_{\rm out}} \Sigma(r) r^3 \Omega(r) (a_{\rm b}/r)^{7/2} dr}{\int_{r_{\rm in}}^{r_{\rm out}} \Sigma(r) r^3 \Omega(r) dr}$$

$$\Omega = \sqrt{G(M_1 + M_2)/R^3}$$

Alignment Timescales

Smallwood et al. (2024e)

$$\frac{\tau_{\rm c}}{\tau_{\rm p}} = \frac{5e_{\rm b}^2(1+4e_{\rm b}^2)}{1+3e_{\rm b}^2-4e_{\rm b}^4} \left(\frac{10-r_{\rm c}}{10-r_{\rm p}}\right)^2 \left(\frac{-625r_{\rm p}^{5/2}+\sqrt{10}}{-625r_{\rm c}^{5/2}+\sqrt{10}}\right)^2 \left(\frac{r_{\rm c}}{r_{\rm c}}\right)^2 \left(\frac{r_{$$

Coplanar Alignment

Smallwood et al. (2019)

Coplanar Alignment

- If the timescale for disc alignment is **shorter** \bullet than the disc's age, planets may form aligned with the binary system.
- If the timescale for disc alignment is **longer** lacksquarethan the disc's age, planets are likely to form **misaligned** with the binary system.

3000

Smallwood et al. (2019)

Polar Alignment

Smallwood et al. (2020)

Polar Alignment

 $M_{disk} = 0.001M$

Smallwood et al. (2020)

- Accretion rate as a function of time. lacksquare
- Coplanar-aligning discs undergo preferential alternating accretion.
- Polar-aligning discs may have transient

Gas-Dust Dynamics

• A useful measure for describing the coupling between dust and gas in the Epstein regime is the Stokes number, which is defined as:

$$St = \frac{\pi \rho_d s}{2 \Sigma_g}$$

 $\rho_{\rm d}$: dust intrinsic density

s : dust grain size

 Σ_{g} : gas surface density

o Precess at the same rate at the gas

- Large grains $St \ge 1$, are weakly coupled to the gas.
 - o Differential precession between gas and dust

Misaligned **Circumbinary Discs**

- The differential precession between the gas and dust leads to the formation of dust traffic jams.
 - o The velocity difference between the gas and dust components is zero, thus no radial drift could occur.

Longarini et al. 2021

Formation of Dust Rings

- Differential precession between the gas and dust produce dust traffic jams.
- The dust traffic jams evolve into dense dust rings.
- This mechanism is robust occurs whenever the disk is misaligned to the binary.
- Dust rings may be the sites for grain growth – planet formation

Gas	x-z plane	
Dust	x-z plane	
Gas	y-z plane	
Dust	y-z plane	

Dusty Polar Circumbinary Disc

Smallwood et al. (2024b)

Tracking Dust Particles

Analysed using SARRACEN (Harris & Tricco 2023)

Smallwood et al. (2024b)

Varying Disc Parameters

- Varying the disc parameters still leads to the formation of dust traffic jams.
 - o Dust traffic jam formation is robust

Control

disc thickness	surface density	sound- speed	viscosity	viscos
run2 $t = 0 P_{orb}$	run $3 t = 0 P_{orb}$	run4 $t = 0 P_{orb}$	run5 $t = 0 P_{orb}$	run6 t=
$t = 200 P_{orb}$	$t = 200 P_{orb}$	$t = 200 P_{orb}$	$t = 200 P_{orb}$	t = 200
t = 500 P _{orb}	$t = 500 P_{orb}$	t = 500 P _{orb}	t = 500 Porb	t = 500
t = 1000 P _{orb}	$t = 1000 P_{orb}$	$t = 1000 P_{orb}$	t = 1000 P _{orb}	t = 1000
	-1 Σ[g/	'cm ³]	0 Smallwood	et al. (2024

Midplane dust-to-gas ratio

• The dust-to-gas ratio ϵ is heightened within the dust traffic jams.

Ψ

Grain Growth via Streaming Instability

- Streaming Instability is a process where drag between solid particles and a gas disk causes particles to cluster and gravitationally collapse into planetesimals.
- Massive filaments form, reaching densities for gravitational collapse into asteroid-sized planetesimals, bypassing traditional formation barriers.

Streaming Instability

• While current SPH simulations cannot resolve the SI, we can estimate SI growth rates given the midplane dust-to-gas ratios and particle sizes in our simulations.

—To this end, we numerically solve the I approximation (e.g. Chen & Lin 2020).

-To this end, we numerically solve the linearized, two-fluid equations in the shearing box

Observational Signatures

- The next-generation Very Large Array (ngVLA) observations will be able to probe cm-sized dust grains.
- Operating within frequencies ranging from 1.2 GHz (25 cm) to 116 GHz (2.6 mm), the ngVLA will serve as a crucial bridge between ALMA and the forthcoming SKA.

ngVLA $43 \mathrm{GHz}$ 10h

The above ngVLA synthetic image shows the detection of dust traffic jams formed in misaligned circumbinary discs.

Smallwood et al. 2024d

Polar Circumbinary Planets

 Polar circumbinary planets can be stable around eccentric binaries (Cuello & Giuppone 2019; Chen et al. 2020, Childs & Martin 2021).

Earth 2.0 Space Mission

- ET will be expected to discover more than 100 circumbinary planets.
- Key questions to address:
 - What are the mass, size distribution, and orbital properties of circumbinary planets?
 - Are there some other populations of CBPs that are not detected in the current Kepler and TESS surveys: misaligned/polar?

(Ge et al. 2022)

Summary

- Circumbinary discs can align to a polar orbit with respect to the binary orbital plane.
- The differential nodal precession between the gas and dust during polar alignment produces dust traffic jams.
- Dust traffic jams with midplane dust-to-gas ratios exceeding unity, highlights the potential role of the streaming instability in fostering conditions conducive to the formation of polar planets.
- Dust traffic jams in initially misaligned circumbinary discs may be observable with the next generation telescopes, ngVLA.

Pressure Gradient

au -6Ba/dr

 $\mathrm{d}P/\mathrm{d}r \left[10^{-6}\mathrm{Ba/au}\right]$